Analisis Sentimen Mahasiswa di Surabaya Terhadap Pelayanan Vaksinasi COVID-19 Menggunakan Beberapa Classifier
Keywords:
Desain Sampul, Buku Cerita Alkitab, Motivasi MembacaAbstract
Indonesia is one of the countries that are currently struggling to deal with the COVID-19 virus pandemic by providing vaccination. The government is currently trying to persuade the public to do vaccination by maximizing COVID-19 vaccination services. In reality, vaccination services still have problems with some aspects. To see various insights on vaccination services that have been implemented, therefore a research was conducted in the field of sentiment analysis to analyze public opinion. In this research, classifiers that will be used are Naïve Bayes, Support Vector Machine (SVM), Random Forest, and Light Gradient Boosting Machine (LGBM) to perform text classification and their performances will be compared with evaluation metrics. There are two types of datasets used, namely questionnaire dataset and social media dataset. The questionnaire model will be tested using a social media dataset, while the social media model will use social media dataset that will be split. The testing results show that the model trained with the social media dataset produces better performance than the questionnaire model. Of these four classifiers, the best model for aspect and sentiment classification is Random ForestReferences
[1] Alzamzami, F., Hoda, M., & Saddik, A. E. 2020. Light
Gradient Boosting Machine for General Sentiment
Classification on Short Texts: A Comparative Evaluation.
Retrieved from https://ieeexplore.ieee.org/stamp/stamp.jsp?
arnumber=9099543.
[2] Athiwaratkun, B., Wilson, A. G., & Anandkumar, A. 2018.
Probabilistic FastText Multi-Sense Word Embeddings.
Retrieved from https://arxiv.org/pdf/1806.02901.pdf.
[3] Baid, P., Gupta, A., & Chaplot, N. 2017. Sentiment Analysis
of Movie Reviews using Machine Learning Techniques. From
https://www.researchgate.net/Sentiment_Analysis_of_Revie
ws_using_Machine_Learning_Techniques/
[4] Charlyn, et al. 2021. Twitter Sentiment Analysis towards
COVID-19 Vaccines in the Philippines Using Naive Bayes.
https://doi.org/10.3390/info12050204.
[5] NN. 2021. Cara Memperbaiki Data Sertifikat Vaksin yang
Salah, Jangan Panik Dulu!. Retrieved from
[6] Dey, et al. 2016. Sentiment Analysis of Review Datasets using
Naïve Bayes’ and K-NN Classifier.
https://doi.org/10.5815/ijieeb.2016.04.07.
[7] Ke, G., et al. 2017. LightGBM: A Highly Efficient Gradient
Boosting Decision Tree. Retrieved from
https://papers.nips.cc/paper/2017/file/6449f44a102-Paper.pdf
[8] Khanvilkar & Vora. 2018. Sentiment Analysis for Product
Recommendation Using Random Forest. Retrieved from
[9] Mountassir, A., Benbrahim, H. & Berrada, I. 2012. An
empirical study to address the problem of Unbalanced Data
Sets in sentiment classification. IEEE 2012 IEEE International
Conference.doi:10.1109/ICS MC.2012.6378300
[10] Musyaddad, A. A. 2021. Ombudsman Temukan Sejumlah
Masalah Vaksinasi Covid di Surabaya. Retrieved from
https://ombudsman.go.id/pengumuman/r/artikel--ombudsman
-temukan-sejumlah-masalah-vaksinasi-covid-di-surabaya.
[11] Priyavrat, & Singh, A. J. 2017. Sentiment Analysis: A
Comparative Study of Supervised Machine Learning
Algorithms Using Rapid miner. Int. J. Res. Appl. Sci. Eng.
Technol., vol. 5, pp. 80–89.
[12] Pristiyono, et al. 2020. Sentiment analysis of COVID-19
vaccine in Indonesia using Naïve Bayes Algorithm. IOP
Conference Series: Materials Science and Engineering.
Retrieved from https://iopscience.iop.org/article/10.1088/
1757-899X/1088/1/ 012045/meta
[13] Prusa, J., Khoshgoftaar, T. M., Dittman, D. J. & Napolitano,
A. 2015. Using Random Undersampling to Alleviate Class
Imbalance on Tweet Sentiment Data. IEEE 2015 IEEE
International Conference. doi:10.1109/IRI.2015.39
[14] Salman, Ghinan. 2021. Punya Keluhan Soal Sertifikat Vaksin
COVID-19, Warga Surabaya Bisa Lapor ke Layanan Ini.
Retrieved from https://regional.kompas.com
/read/2021/08/27/203228078/punya-keluhan-soal-sertifikatvaksin-covid-19-warga-surabaya-bisa-lapor-ke.
[15] Scikit-learn Developers. 2021. MultinomialNB. Retrieved
from https://scikit-learn.org/sTabel/modules/generated/
sklearn.naive_bayes.MultinomialNB.html
[16] Somantri, O., & Apriliani, D. 2018. Support Vector Machine
Berbasis Feature Selection Untuk Sentiment Analysis
Kepuasan Pelanggan Terhadap Pelayanan Warung Dan
Restoran Kuliner Kota Tegal. https://doi.org/10.25126
/jtiik20185867
[17] Ting, S.L, Ip, W. H., & Tsang, A. H. C. 2011. Is Naive Bayes
a Good Classifier for Document Classification?. Retrieved
from https://www.researchgate.net/Is-Naive-Bayes-a-GoodClassifier-for-Document-Classification.pdf
[18] Young, J. C., & Rusli, A. 2019. Review and Visualization of
Facebook’s FastText Pretrained Word Vector Model.
doi:10.1109/icesi.2019.8863015