Meningkatkan Variasi Tindakan Non-Playable Character Pada Game Survival Menggunakan Metode Markov
Keywords:
Government Public Relations, Analisis Isi, Kementerian Republik Indonesia, E-GovernmentAbstract
Digital games or often called Video games are common today. The development of game variants makes games never stop improving, especially in the Artificial Intelligence section. Each game has its own artificial intelligence so that many variations are generated and make a game unique. This research tries to make a variation of the actions taken by NPCs against players. In an effort to make these variations, the Markov Chain method is used to help state selection. Markov Chain method is combined with Finite-State Machine for NPC state selection. Based on the results of testing and questionnaires, 80.4% strongly agree and 19.6% agree that the resulting NPC has a large variety of actions. The results of the questionnaire also found that 69.6% were very unrealistic and 30.4% said that NPCs were unrealistic or did not imitate human behavior.References
[1] Ge, M., Hu, J., Liu, M., & Zhang, Y. 2018. Reassembly
classification selection method based on the Markov Chain.
Assembly Automation, 38(4), 476–486.
https://doi.org/10.1108/AA-03-2017-043.
[2] Hassan, I., Faisal, M., & Arif, Y. M. 2018. Implementation
of Artificial Bee Colony Algorithm to Generate NPC
Behavior in Survival Horror Game " Left Alone " As A
Media Introduction to House of Cut Nyak Dhien. 7(1), 16–
24.
[3] Hernawan, S. R. 2018. Penerapan Metode Finite State
Machine Pada Game “ The Mahasiswa ” Guna Membangun
Perilaku Non Playable Character Halaman Pengesahan
Dosen Penguji Penerapan Metode Finite State Machine Pada
Game “ The Mahasiswa ” Guna Membangun Perilaku Non
Playable Char. Jurnal Edukasi Dan Penelitian Informatika
(JEPIN), Retrieved from https://jurnal.untan.ac.id/.
[4] Hidayat, E. W., Rachman, A. N., & Azim, M. F. 2019.
Penerapan Finite State Machine pada Battle Game Berbasis
Augmented Reality. Jurnal Edukasi Dan Penelitian
Informatika (JEPIN), 5(1), 54.
https://doi.org/10.26418/jp.v5i1.29848
[5] Kasse, I., Didiharyono, D., & Maulidina, M. 2020. Metode
Markov Chain untuk Menghitung Premi Asuransi pada
Pasien Penderita Penyakit Demam Berdarah Dengue. AlKhwarizmi: Jurnal Pendidikan Matematika Dan Ilmu
Pengetahuan Alam, 7(2), 151–160.
https://doi.org/10.24256/jpmipa.v7i2.1251
[6] Kopel, M., & Hajas, T. 2018. Implementing AI for Nonplayer Characters in 3D Video Games. Lecture Notes in
Computer Science (Including Subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics),
10751 LNAI, 610–619. https://doi.org/10.1007/978-3-319-
75417-8_57
[7] Sri, U. , Wayan, M. , Purnaba, I. G. P. (2018). Evaluasi
Numerik Penduga Fungsi Nilai Harapan Dan Fungsi Ragam
Proses Poisson Majemuk Dengan Intensitas Eksponensial
Fungsi Linear. Journal of Mathematics and Its Applications,
17(2), 157-169. https://doi.org/10.29244/jmap.17.2.157-169.
[8] Saprudin, S., Liliasari, L., Setiawan, A., & Prihatmanto, A.
S. 2019. The effectiveness of using digital game towards
students’ academic achievement in small and large classes: A
comparative research. International Journal of Learning,
Teaching and Educational Research, 18(12), 196–210.
https://doi.org/10.26803/ijlter.18.12.12
[9] Tadayon, M., & Pottie, G. J. 2020. Predicting Student
Performance in an Educational Game Using a Hidden
Markov Model. IEEE Transactions on Education, 63(4),
299–304. https://doi.org/10.1109/TE.2020.2984900
[10] Tirtana, A., & Pumpungan, M. (2020). Perancangan Game
Visual Novel “ Coconut Kids ” Sebagai Sarana Edukasi
Pelestarian Alam. Universitas 17 Agustus 1945 Surabaya.
Retrieved from http://repository.untagsby.ac.id/id/eprint/5224.
[11] Wang, L., Huang, W., Li, Y., Evans, J., & He, S. (2020).
Multi-AI competing and winning against humans in iterated
rock-paper-scissors game. Sci Rep 10, 13873 (2020).
https://doi.org/10.1038/s41598-020-70544-7.
[12] Yulsilviana, E., & Ekawati, H. 2019. Penerapan Metode
Finite State Machine (Fsm) Pada Game Agent Legenda Anak
Borneo. Sebatik, 23(1), 116–123.
https://doi.org/10.46984/sebatik.v23i1.453
[13] Zhou, Y., Wang, L., Zhong, R., & Tan, Y. 2018. A Markov
Chain Based Demand Prediction Model for Stations in Bike
Sharing Systems. Mathematical Problems in Engineering,
2018. https://doi.org/10.1155/2018/8028714
[14] Zhu, X. 2019. Behavior tree design of intelligent behavior of
non-player character (NPC) based on Unity3D. Journal of
Intelligent and Fuzzy Systems, 37(5), 6071–6079.
https://doi.org/10.3233/JIFS-179190
[15] Zou, Q., Li, Q., Guo, H., & Shi, J. 2018. A discrete-time and
finite-state Markov Chain model for association football
matches. Communications in Statistics: Simulation and
Computation, 47(8), 2476–2485.