PENGARUH KOMPOSISI ALKALI ACTIVATOR DAN URUTAN PENYAMPURAN TERHADAP KARAKTERISTIK MORTAR GEOPOLIMER HIGH CALCIUM FLY ASH

Authors

  • Kristella Nathania Lairenz Mahasiswa Program Studi Teknik Sipil Universitas Kristen Petra
  • Ricky Surya Mahasiswa Program Studi Teknik Sipil Universitas Kristen Petra
  • Djwantoro Hardjito Dosen Program Studi Teknik Sipil Universitas Kristen Petra
  • Antoni Antoni Dosen Program Studi Teknik Sipil Universitas Kristen Petra

Keywords:

Kampanye, Sampah Plastik, Dispenser Kresek, Pakai Ulang Lagi

Abstract

Karakteristik beton geopolimer dipengaruhi oleh berbagai faktor, diantaranya ialah karakteristik material dasar, komposisi alkali activator, mix design, mixing procedure, dan prosedur curing. Penelitian ini berfokus pada komposisi perbandingan alkali activator dan urutan penyampuran yang diterapkan pada high calcium fly ash. Alkali activator yang dimaksud adalah perbandingan larutan sodium silikat dengan larutan NaOH. Perbandingan alkali activator yang digunakan sebesar 0.5, 1.0, 2.0, 2.5 dan 3.0. Konsentrasi larutan NaOH ditetapkan 8M. Pengujian yang dilakukan yaitu initial setting time pasta geopolimer dan kuat tekan mortar geopolimer. Berdasarkan hasil penelitian diperoleh kesimpulan bahwa initial setting time dipengaruhi oleh variasi perbandingan alkali activator dan urutan penyampuran. Urutan penyampuran prosedur dengan menyampurkan alkali bersama dimana larutan sodium silikat dicampur terlebih dahulu dengan larutan NaOH, mengakibatkan flash setting untuk seluruh perbandingan alkali dan kuat tekan tertinggi pada perbandingan alkali activator sebesar 1.0. Sedangkan, prosedur dengan menyampurkan alkali terpisah dapat mengatasi flash setting dengan perbandingan alkali activator yang kecil, serta hasil kuat tekan kuat tekan tertinggi pada perbandingan alkali activator sebesar 0.5. Hal ini dapat disimpulkan bahwa semakin besar perbandingan alkali activator, maka kuat tekan cenderung menurun.

References

ASTM:C109M-02. (2007). “Standard Test Method for Compressive Strength of Hydraulic Cement Mortars”. Annual Book of ASTM Standards, 04, 1–6. https://doi.org/10.1520/C0109

ASTM C 618. (2010). “Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use”. Annual Book of ASTM Standards, 3–6. https://doi.org/10.1520/C0618

Barbosa, V. F. F., Mackenzie, K. J. D., & Thaumaturgo, C. (2000). Synthesis and Characterisation of Materials Based on Inorganic Polymers of Alumina and Silica : Sodium Polysialate Polymers, 2, 309–317.

Davidovits, J. (1994a). “Properties of Geopolymer Cements”. First International Conference on Alkaline Cements and Concretes, 1–19.

Davidovits, J. (2008). Geopolymer Chemistry and Applications (2nd ed.). Institute Géopolymère , Saint-Quentin, France.

Dewi, I. N. (2010). Effect of Water-to-Binder Ratio and Activator Content on The Setting Time of Fly Ash Based Geopolymer. Buku skripsi. Retrived from: https://digilib.uns.ac.id/dokumen/download/22310/NDUxMzE=/Pengaruh-Faktor-Air-Binder-Dan-Kadar-Aktivator-Terhadap-Setting-Time-Fly-Ash-Based-Geopolymer-Effect-Of-Water-Binder-Ratio-And-Activator-Content-On-The-Setting-Time-Of-Fly-Ash-Based-Geopolymer-abstrak.pdf

Erlando, W., Frengki, G., & Hardjito, D. (2018). “Pengaruh Prosedur Urutan Pencampuran dan Komposisi Alkali Activator Terhadap Setting Time dan Kuat Tekan Mortar Geopolimer Berbahan Dasar Fly Ash Tipe C”. Dimensi Pratama Teknik Sipil, 7(1), 350–357.

Fitriani, D. R. (2010). Pengaruh Modulus Alkali Dan Kadar Aktivator terhadap Kuat Tekan Fly Ash-Based Geopolymer Mortar. Buku skripsi. Retrived from https://eprints.uns.ac.id/6119/1/180191611201107491.pdf

Hardjito, D., Cheak, C. C., & Lee Ing, C. H. (2008). “Strength and Setting Times of Low Calcium Fly Ash-based Geopolymer Mortar”. Modern Applied Science, 2(4), 3–11. https://doi.org/10.5539/mas.v2n4p3

Hardjito, D., Wallah, S. E., Sumajouw, D. M. J., & Rangan, B. V. (2005). “On the Development of Fly Ash-Based Geopolymer Concrete”. ACI Materials Journal, 101(6), 467–472.

Junaid, M. T., Kayali, O., Khennane, A., & Black, J. (2015). “A Mix Design Procedure For Low Calcium Alkali Activated Fly Ash-Based Concretes”. Construction & Building Materials, 79(March), 301–310. https://doi.org/10.1016/j.conbuildmat.2015.01.048

Leoindarto C.Y., Sanjaya A., & Sugiharto H. (2006). Penggunaan Fly Ash Sebagai Bahan Dasar Beton Geopolymer Mutu Tinggi, 1. Buku skripsi. Retrieved from http://lestarysnote.blogspot.co.id/2013/10/penelitian-komparatif.html

Morsy, M., Al-Salloum, Y., & Alsayed, S. (2014). Effect of Sodium Silicate to Sodium Hydroxide Ratios on Strength and Microstructure of Fly Ash Geopolymer Binder, 39(6), 4333-4339. https://doi.org/10.1007/s13369-014-1093-8

Nugteren, H. W., Butselaar-Orthlieb, V. C. L., & Izquierdo, M. (2009). “High Strength Geopolymers Produced From Coal Combustion Fly Ash”. Global Nest Journal, 11(2), 155–161.

Rattanasak, U., & Chindaprasirt, P. (2009). “Influence of NaOH Solution on the Synthesis of Fly Ash Geopolymer”. Minerals Engineering, 22(12), 1073–1078. https://doi.org/10.1016/j.mineng.2009.03.022

Risdanareni, P., Ekaputri, J. J., & Abdullah, M. M. A. B. (2015). “Effect of Alkaline Activator Ratio to Mechanical Properties of Geopolymer Concrete with Trass as Filler”. Applied Mechanics and Materials, 754–755(April), 406–412. https://doi.org/10.4028/www.scientific.net/AMM.754-755.406

Skavara, F., Kopecky, L., Nemecek, J., & Bittnar, Z. (2006). “Micro Structure of Geopolymer Materials Based on Fly Ash”. Ceramics, 50(4), 208–215.

Downloads

Published

2019-09-11