PENGARUH KOMPOSISI DAN KADAR ALKALI ACTIVATOR DALAM PEMBUATAN ONE-PART GEOPOLYMER

William Alexander¹, Jonathan Robby², Djwantoro Hardjito³

ABSTRAK: Proses produksi semen memberikan kontribusi sebesar 8% dari total emisi CO₂ yang dilepaskan ke udara. Oleh karena itu, dikembangkan beton geopolimer yang mana menggunakan fly ash sebagai alternatif bahan. Namun, geopolimer one-part yang menggunakan NaOH dan Na₂ SiO₃ menghasilkan suhu campuran yang tinggi sehingga meningkatkan resiko kecelakaan kerja. Oleh karena itu, penelitian ini bertujuan untuk menggunakan Na₂ CO₃ dan Na₂ SiO₃ sebagai alternatif alkali activator yang digunakan. Hasil penelitian menunjukkan bahwa penggunaan Na₂ CO₃ dan Na₂ SiO₃ dalam kadar dan rasio tertentu dapat menghasilkan kuat tekan yang setara dengan penggunaan NaOH dan Na₂ SiO₃ . Selain itu, untuk mencapai kuat tekan optimum, penggunaan NaOH diperlukan dalam jumlah yang lebih sedikit dibandingkan dengan penggunaan Na₂ CO₃ karena keduanya memiliki massa molekul relatif yang berbeda. Dalam penelitian ini juga didapatkan bahwa semakin menurunnya kadar Na₂ SiO₃ dalam campuran, efflorescence yang terjadi semakin banyak diiringi dengan menurunnya kuat tekan. Namun, efflorescence sangat bergantung pada pori sampel tersebut. Semakin besar pori yang terdapat pada sampel, maka efflorescence yang terjadi akan semakin banyak.

KATA KUNCI: geopolimer one-part, Na₂ CO₃, NaOH, Na₂ SiO₃

1. PENDAHULUAN

Total gas CO₂ yang dilepaskan ke udara akibat aktivitas manusia, 8% di antaranya adalah kontribusi dari semen Portland (Luukkonen et al., 2018). Polusi yang ditimbulkan ini sebagian besar disebabkan dari proses kalsinasi semen. Proses kalsinasi adalah proses penguraian kalsium karbonat (CaCO₃) menjadi kalsium oksida (CaO) dan karbon dioksida (CO₂) (Mikulčić et al., 2012). Maka dari itu, dikembangkan beton geopolimer yaitu beton yang tidak menggunakan semen, melainkan menggunakan salah satu limbah sisa pembakaran batubara yaitu abu terbang. Abu terbang dapat menjadi alternatif pengganti *Ordinary Portland Cement* (OPC) karena juga memiliki komposisi silika dan alumina di dalamnya (Shah et al., 2020).

Geopolimer merupakan polimer anorganik, dimana menggunakan bahan utama yang disintesis oleh reaksi aktivasi alkali yaitu abu terbang dan material lainnya yang memiliki kandungan silika dan alumina yang tinggi (Cong and Cheng, 2021). Geopolimer sendiri menurut cara pembuatannya terbagi menjadi 2 yaitu geopolimer *two-part* dan geopolimer yang sedang dikembangkan yakni *one-part*. Dalam proses pembuatannya, geopolimer *two-part* menggunakan *liquid alkali activator*, sedangkan untuk geopolimer *one-part* menggunakan *solid alkali activator*. Geopolimer *two-part* memiliki beberapa kelemahan diantaranya proses aktivasi material yang menggunakan *liquid alkali activator* dengan molaritas tinggi sehingga berbahaya dalam pengerjaan, dan yang kedua yaitu dari segi transportasi lebih mahal untuk mengangkut aktivator yang berbentuk cair daripada aktivator yang berbentuk padat (Luukkonen et al., 2018). Penelitian ini melakukan analisa komposisi *solid alkali activator* yang dapat menghasilkan kuat tekan geopolimer *one-part* yang optimum dengan visualisasi yang baik. Variabel penelitian yang

¹ Mahasiswa Program Studi Teknik Sipil Universitas Kristen Petra, b11180076@john.petra.ac.id

² Mahasiswa Program Studi Teknik Sipil Universitas Kristen Petra, b11180082@john.petra.ac.id

³ Dosen Program Studi Teknik Sipil Universitas Kristen Petra, djwantoro.h@petra.ac.id

digunakan antara lain *Fly ash*, sodium karbonat (Na₂ CO₃), sodium metasilikat anhidrat (Na₂ SiO₃), sodium hidroksida (NaOH) dan kadar *alkali activator* dalam campuran Dalam penelitian ini terdapat ruang lingkup yang dibatasi: (1) *Fly ash* yang digunakan berasal dari PLTU Tanjung Jati, (2) *Alkali activator* yang digunakan adalah Na₂ CO₃, Na₂ SiO₃, NaOH dalam bentuk padat dan *liquid* sodium silikat, (3)Pasir yang digunakan adalah pasir silika, (4) Prosedur curing menggunakan oven dengan temperatur 60°C selama 24 jam, (5) *Mix design* beton geopolimer sesuai dengan penelitian sebelumnya, (6) Tempat penelitian dilakukan di laboratorium beton Universitas Kristen Petra Surabaya.

2. KOMPOSISI CAMPURAN DAN MATERIAL

Metode pencampuran pada sampel geopolimer *one-part* menggunakan metode *fly ash* dicampur terlebih dahulu dengan *alkali activator*, selanjutnya diberi air sehingga membentuk pasta, dan kemudian baru dicampurkan dengan pasir. Selain itu, juga dilakukan pembuatan sampel geopolimer *two-part control* yang mana menggunakan *liquid* sodium silikat sebagai kontrol kuat tekan dari sampel geopolimer *one-part*.

Pada penelitian ini w/fa (*water-fly ash*) yang digunakan sebesar 0.3 dan rasio a/fa (*solid alkali-fly ash*) sebesar 0.24. Sedangkan untuk campuran geopolimer *one-part* dengan sodium hidroksida dan sodium metasilikat, jumlah sodium hidroksida yang digunakan mengalami perubahan 0.38 kali dari jumlah Na₂ CO₃ karena adanya perbedaan massa molekul relatif. Selain itu, untuk geopolimer *two-part control* digunakan larutan Na₂ CO₃ dan NaOH sebesar 8M sesuai dengan molaritas optimum pada penelitian Antoni et al. (2020). Dalam tahap ini, dilakukan uji kuat tekan 7, 28, dan 56 hari dan juga uji *visual observation* untuk sampel geopolimer *one-part* melalui perendaman campuran dalam air setinggi 1 cm.. Perbandingan Na₂ CO₃ atau NaOH dan Na₂ SiO₃ yang digunakan adalah 0.5; 0.67; 1; 2; 3; 4 seperti pada **Tabel 1** dan **Tabel 2**.

Tabel 1. Mix Design Mortar Geopolimer One-part dengan Na₂ CO₃

Perbandingan Na ₂ SiO ₃ (s): Na ₂ CO ₃ (s)	Fly Ash (gram)	Pasir (gram)	Na ₂ CO ₃ (gram)	Na ₂ SiO ₃ (gram)	Air (gram)
0.50	1000	2000	160	80	300
0.67	1000	2000	144	96	300
1.00	1000	2000	120	120	300
2.00	1000	2000	80	160	300
3.00	1000	2000	60	180	300
4.00	1000	2000	48	192	300

Tabel 2. Mix Design Mortar Geopolimer One-part dengan NaOH

Perbandingan Na ₂ SiO ₃ (s): NaOH(s)	Fly Ash (gram)	Pasir (gram)	NaOH (gram)	Na ₂ SiO ₃ (gram)	Air (gram)
1.33	1000	2000	60.38	80	300
1.75	1000	2000	54.34	96	300
2.63	1000	2000	45.28	120	300
5.26	1000	2000	30.19	160	300
7.89	1000	2000	22.64	180	300
10.53	1000	2000	18.11	192	300
13.16	1000	2000	15.09	200	300

Beberapa analisa yang kami lakukan antara lain konsistensi normal, *specific gravity*, XRF (*X-Ray Fluorescence*), dan pH (kadar keasaman). Sedangkan untuk pasir, analisa yang kami lakukan adalah analisa ayakan/gradasi. Hasil analisa *fly ash* yang akan digunakan, yaitu konsistensi normal sebesar 0.2

dan *specific gravity* dari *fly ash* diperoleh angka 2.285. Untuk analisa XRF, data diperoleh dari hasil pengujian yang dilakukan oleh PT. Anugrah Analisis Sempurna yang dapat dilihat pada **Tabel 3**.

Tabel 3. Komposisi Kimia Fly Ash PLTU Tanjung Jati

Parameter	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	SO ₃	Na ₂ O	K ₂ O	LOI
Jumlah (%)	53.12	30.29	0.05	4.32	0.26	1.95	0.32	0.08	1.79

Menurut (ASTM C618-12a, 2012), *class* dari *fly ash* dapat diklasifikasikan berdasarkan kandungan SiO₂ + Fe₂ O₃ + Al₂ O₃. *Fly ash* dapat dikategorikan sebagai *class* F apabila memiliki kandungan SiO₂ + Fe₂ O₃ + Al₂ O₃ minimal 70%. Sedangkan untuk *class* C, *fly ash* dapat dikategorikan dalam *class* tersebut apabila memiliki kandungan SiO₂ + Fe₂ O₃ + Al₂ O₃ minimal 50% dan kurang dari 70%. Dengan demikian, *fly ash* Tanjung Jati dapat dikategorikan sebagai *class* F karena memiliki jumlah kandungan SiO₂ + Fe₂ O₃ + Al₂ O₃ sebesar 83.46%. Dan dilakukan uji pH yang dilakukan menurut acuan standar (ASTM D5239-98, 2004). Dari pengujian yang dilakukan, diperoleh pH dari *fly ash* tersebut sebesar 10.56 yang berarti *class* F. Analisa pasir yang digunakan mengacu pada (ASTM C778-02, 2003). *Fineness modulus* dari pasir disyaratkan berkisar antara 1.91 hingga 2.19. Namun, pasir silika yang digunakan tidak memenuhi ketentuan yang disyaratkan oleh (ASTM C778-02, 2003). Oleh karena itu, gradasi pasir yang digunakan diatur sedemikian rupa agar memenuhi ketentuan yang ada, seperti pada **Tabel 4**.

Tabel 4. Gradasi Pasir Silika yang Digunakan

Sieve Opening	Berat Te	ertahan	Berat Akumulatif		
(mm)	(gr)	(%)	Tertahan (%)	Lolos (%)	
1.18	0	0	0	100	
0.6	88	8.8	8.8	91.2	
0.425	378	37.8	46.6	53.4	
0.3	78	7.8	54.4	45.6	
0.15	411	41.1	95.5	4.5	
Base	45	4.5	100	0	
Total	1000	FM	2.053		

Data analisa dari sodium metasilikat anhidrat yang mana berupa padatan, kami dapatkan dari *Certificate of Analysis* (COA) dari Toko Multi Jaya Kimia. Data analisa dapat dilihat pada **Tabel 5.**

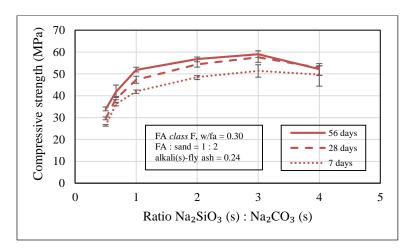
Tabel 5. Hasil Analisa Sodium Metasilikat Anhidrat

Parameter	Na ₂ O (%)	SiO ₂ (%)	Water insoluble (%)	Fe	Whiteness (%)	Bulk Density	pH of 1.0% Solution	Melting (°C)	Particular Size (%)
Hasil	51.67	46.25	0.06	98	91	1.18	12.85	72.2	94.01

Untuk sodium karbonat dan sodium hidroksida kami dapatkan dari *Chemposite Store*, Surabaya. Sodium karbonat yang digunakan berbentuk bubuk padatan, sedangkan untuk sodium hidroksida berbentuk *flakes*. Setelah itu kami melakukan pengujian pH dan suhu material *alkali activator*. Hasil dari pengujian suhu dan pH dapat dilihat pada **Tabel 6**. Dari data tersebut, larutan NaOH memiliki sifat basa yang lebih kuat dibandingkan dengan larutan Na₂ CO₃. Dalam penggunaan larutan 8M untuk NaOH memiliki pH sebesar 14, sedangkan Na₂ CO₃ memiliki pH sebesar 12.5. Begitu pula dengan suhu pada larutan 8M,

larutan NaOH memiliki suhu sebesar 83.8° C dan Na $_2$ CO $_3$ sebesar 47.3° C. Dimana larutan NaOH melepaskan energi eksoterm yang lebih besar dibandingkan dengan larutan Na $_2$ CO $_3$.

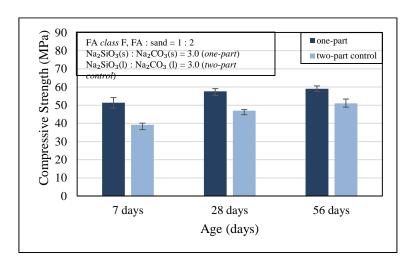
Na₂ CO₃ Molaritas NaOH pH indikator Suhu (°C) pH indikator Suhu (°C) Larutan 0.1M28.8 10.5 30.4 10.5 0.3M11.0 29.7 12.5 32.2 32.9 1M 11.5 13 37.3 41.9 13 51.8 3M 12.0 47.3 14 8M 12.5 83.8


Tabel 6. Pengujian pH dan Suhu Na₂ CO₃ dan NaOH

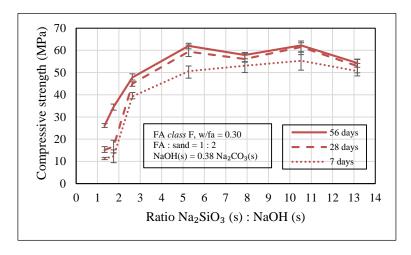
3. ANALISA HASIL DAN PEMBAHASAN

Ada dua pengujian yang dilakukan yaitu uji kuat tekan dan *visual observation* pada mortar. Uji kuat tekan menggunakan *Universal Testing Machine* di Laboratorium Beton dan Konstruksi Universitas Kristen Petra. Untuk *visual observation*, dilakukan observasi terjadi atau tidaknya *efflorescence* berdasar hasil mortar yang didapatkan setelah direndam dalam air setinggi 1 cm.

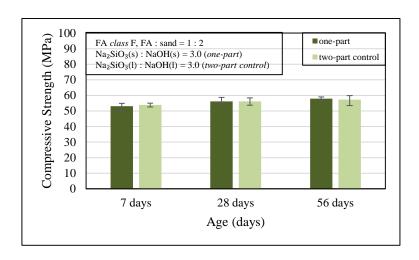
3.1 Kuat Tekan Mortar


Pengujian kuat tekan mortar geopolimer *one-part* dengan Na₂ CO₃ dilakukan pada usia 7, 28, 56 hari. Pengujian dilakukan berdasar standard (C109M-07, 2007). Tahap ini menggunakan rasio *alkali activator(s) - fly ash* sebesar 0.24, karena merupakan rasio *alkali activator(s) - fly ash* optimum pada penelitian Ivy and Wijaya (2021). Grafik hasil kuat tekan mortar geopolimer *one-part* dengan menggunakan Na₂ SiO₃ (s) dan Na₂ CO₃ (s) dapat dilihat pada **Gambar 1**.

Gambar 1. Kuat Tekan Mortar Geopolimer One-part dengan Na_2 CO_3


Dari **Gambar 1**, dapat dilihat bahwa semakin tinggi kadar Na₂ SiO₃ dalam campuran, maka kuat tekan yang diperoleh akan semakin tinggi. Kuat tekan optimum geopolimer *one-part* dengan Na₂ CO₃ dicapai pada rasio Na₂ SiO₃ (s) dan Na₂ CO₃ (s) 3.0 yaitu sebesar 59 MPa. Selain itu, juga dilakukan pembuatan geopolimer *two-part* pada rasio Na₂ SiO₃ (l) dan Na₂ CO₃ (l) sebesar 3.0 sebagai kontrol kuat tekan dari geopolimer *one-part* seperti pada **Gambar 2**. Campuran geopolimer *two-part control* yang difungsikan sebagai kontrol kuat tekan sangat bergantung pada kekentalan sodium silikat yang digunakan. Dimana semakin kental dari *liquid* sodium silikat yang digunakan, maka kuat tekan yang dihasilkan dapat semakin tinggi pula. Sodium silikat yang digunakan pada penelitian ini memiliki

persentase *solid* sebesar 58.9 %. Dan dapat dilihat bahwa kuat tekan geopolimer *one-part* sebesar 59 MPa memiliki kuat tekan lebih tinggi dibandingkan dengan *two-part control* sebesar 51 MPa.


Gambar 2. Kuat Tekan Mortar Kontrol Geopolimer One-part dengan Na₂ CO₃

Sedangkan untuk geopolimer *one-part* dengan NaOH, jumlah *solid* sodium hidroksida yang digunakan sama dengan 0.38 kali jumlah *solid* sodium karbonat karena keduanya memiliki massa molekul relatif yang berbeda. Grafik kuat tekan dari geopolimer *one-part* dengan NaOH dapat dilihat pada **Gambar 3**.

Gambar 3. Kuat Tekan Mortar Geopolimer One-part dengan NaOH

Dari **Gambar 3**, dapat dilihat bahwa kuat tekan optimum didapat pada rasio $Na_2 SiO_3$ (s): NaOH(s) 10.53 sebesar 62.2 MPa. Hal ini disebabkan karena semakin besar jumlah $Na_2 SiO_3$, maka kandungan silikat yang ada juga semakin banyak sehingga jumlah pengikatan yang terjadi dalam campuran semakin meningkat. Tetapi penggunaan $Na_2 SiO_3$ yang terlalu banyak juga dapat mengakibatkan pengurangan kuat tekan, seperti pada rasio $Na_2 SiO_3$ (s): NaOH(s) 13.16 sebesar 54.3 MPa. Selain itu, dilakukan juga pembuatan campuran geopolimer *two-part control* sebagai kontrol kuat tekan dari campuran geopolimer *one-part* seperti pada **Gambar 4**. Dapat dilihat dari gambar tersebut, kuat tekan dari campuran geopolimer *one-part* sebesar 57.9 MPa mendekati kuat tekan *two-part control* sebesar 57.3 MPa.

Gambar 4. Kuat Tekan Mortar Kontrol Geopolimer One-part dengan NaOH

3.2 Visual Observation

Visual observation dilakukan pada mortar geopolimer *one-part* untuk melihat stabilitas reaktan yang digunakan. *Visual observation* dilakukan pada 7, 14, dan 28 hari seperti terlihat pada **Tabel 7** dan **Tabel 8**. Dapat dilihat pada **Tabel 7**, pemakaian rasio Na₂ SiO₃ (s): Na₂ CO₃ (s) sebesar 0.67 dapat membuat campuran menjadi lebih tidak stabil dibandingkan dengan pemakaian Na₂ CO₃ yang lebih sedikit pada rasio Na₂ SiO₃ (s): Na₂ CO₃ (s) 4.0. Hal tersebut sesuai dengan penelitian yang dilakukan Zhu et al. (2021), dimana produk utama *efflorescence* dengan penggunaan *fly ash* yaitu sodium karbonat seperti Na₂ CO₃ H₂ O. Sedangkan pada **Tabel 8**, pemakaian NaOH pada campuran mortar terlihat lebih stabil, dimana hampir tidak ada *efflorescence* yang terjadi. *Efflorescence* pada campuran NaOH hanya terjadi pada saat 28 hari dengan rasio tertentu, dimana hal tersebut terjadi karena *curing* menggunakan oven yang menunda kristalisasi gel aluminosilikat setelah proses geopolimerisasi yang lebih lama (Zhu et al., 2021).

Tabel 7. Efflorescence Mortar Geopolimer One-part dengan Na₂ CO₃

Tabel 8. Efflorescence Mortar Geopolimer One-part dengan NaOH

		Ratio Na ₂ SiO ₃ (s): NaOH(s)								
		1.33	1.75	2.63	5.26	7.89	10.53	13.16		
	7 hari	X	X	X	X	X	X	X		
Umur	14 hari	X	X	X	X	X	X	x		
	28 hari	x	X	X	V	X	X	V		

Keterangan:

x = Tidak terjadi efflorescence

v = Terjadi *efflorescence*

vv = Banyak terjadi *efflorescence*

4. KESIMPULAN

Dari penelitian *one-part geopolymer* menggunakan *alkali activator* yang berbeda yaitu NaOH dan Na₂ CO₃, didapatkan beberapa kesimpulan yaitu:

- 1. Mortar geopolimer *one-part* yang menggunakan padatan *alkali activator* menghasilkan kuat tekan yang lebih tinggi dibandingkan dengan geopolimer *two-part control*. Pada rasio antara Na₂ SiO₃ dan Na₂ CO₃ yang sama yaitu 3.0, campuran geopolimer *one-part* dengan Na₂ CO₃ menghasilkan kuat tekan optimum sebesar 59 MPa. Sedangkan untuk campuran geopolimer *two-part control* dengan Na₂ CO₃, kuat tekan optimum yang diperoleh adalah sebesar 51 MPa.
- 2. Pada kuat tekan optimum dari campuran geopolimer *one-part* dengan Na₂ CO₃ yaitu sebesar 59 MPa didapatkan ketika rasio Na₂ SiO₃ (s) dan Na₂ CO₃ (s) sebesar 3.0. Sedangkan untuk campuran geopolimer *one-part* dengan NaOH, kuat tekan optimum yaitu sebesar 62.2 MPa didapatkan ketika rasio Na₂ SiO₃ (s) dan NaOH(s) sebesar 10.53. Dari hasil kuat tekan dapat disimpulkan bahwa penggunaan NaOH memiliki kuat tekan yang lebih tinggi sebesar 62.2 MPa dibandingkan dengan Na₂ CO₃ sebesar 59 MPa
- 3. Efflorescence dapat terjadi semakin banyak diikuti dengan menurunnya kadar Na₂ SiO₃ dalam campuran, dimana kadar silikat yang berfungsi sebagai perekat akan berkurang yang akan diiringi dengan menurunnya kuat tekan dari campuran. Efflorescence juga sangat bergantung pada pori dari sampel tersebut. Semakin besar pori yang terdapat pada sampel, maka efflorescence yang terjadi akan semakin banyak.

5. DAFTAR REFERENSI

Antoni, A., Shenjaya, S. D., Lupita, M., Santosa, S., Wiyono, D., and Hardjito, D. (2020). "Utilization of Low Sulfur Fly Ash from Circulating Fluidized Bed Combustion Burner as Geopolymer Binder." *Civil Engineering Dimension*. Vol. 22, No. 2, 94–100.

ASTM C618-12a. (2012). "Standard Specification for Coal Fly Ash and Raw or Calcined Natural

- Pozzolan for Use in Concrete." *United State of America: ASTM International*. 1–5.
- ASTM C778-02. (2003). "Standard Specification for Standard Sand." *United State of America: ASTM International*.
- ASTM D5239-98. (2004). "Standard Practice for Characterizing Fly Ash for Use in Soil Stabilization." *United State of America: ASTM International.*
- C109M-07, A. (2007). "Compressive Strength of Hydraulic Cement Mortars (C 109)." *United State of America: ASTM International*. 29–31.
- Cong, P., and Cheng, Y. (2021). "Advances in Geopolymer Materials: A Comprehensive Review." *Journal of Traffic and Transportation Engineering (English Edition)*. Vol. 8, No. 3, 283–314.
- Ivy, G., and Wijaya, K. (2021). *Pengaruh Komposisi Alkali Activator dan Metode Pencampuran pada Pembuatan One-Part Geopolymer*. Skripsi, Universitas Kristen Petra, Surabaya.
- Luukkonen, T., Abdollahnejad, Z., Yliniemi, J., Kinnunen, P., and Illikainen, M. (2018). "One-part Alkali-Activated Materials: A Review." *Cement and Concrete Research*. Vol. 103, 21–34.
- Mikulčić, H., von Berg, E., Vujanović, M., Priesching, P., Perković, L., Tatschl, R., and Duić, N. (2012). "Numerical Modelling of Calcination Reaction Mechanism for Cement Production." *Chemical Engineering Science*. Vol. 69, No. 1, 607–615.
- Shah, S. F. A., Chen, B., Oderji, S. Y., Haque, M. A., and Ahmad, M. R. (2020). "Improvement of Early Strength of Fly Ash-slag based One-part Alkali Activated Mortar." *Construction and Building Materials*. Vol. 246.
- Zhu, H., Qiao, P., Zhang, Y., Chen, J., and Li, H. (2021). "Efflorescence of Microwave-heated Alkaliactivated Cement Synthesized with Ultrafine Coal Combustion Ashes." *Fuel.* Vol. 303.