Penggunaan Convolutional Recurrent Neural Network dan RLSA untuk Mengambil Data pada Akta Kelahiran
(1) Program Studi Teknik Informatika
(2) Program Studi Teknik Informatika
(3) Program Studi Teknik Informatika
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
Albelwi, S., & Mahmood, A. 2017. A Framework for Designing the Architectures of Deep Convolutional Neural Network. Entropy, 5.
Bishop, C. 1998. Neural Networks and Pattern Recognition. London: Academic Press.
Fausett, L. 1994. Fundamentals of Neural Networks. New Jersey: Prentice-Hall, Inc.
Goodfellow, I., Bengio, Y., & Courville, A. 2016. Deep Learning. Cambridge: MIT Press.
Ryan, M., & Hanafiah, N. 2015. An Examination of Character Recognation on ID Card using Template Matching Approach. Procedia Computer Science, 520-529.
Shafait, F., Keysers, D., & Breuel, T. M. 2006. Performance Comparison of Six Algorithms for Page Segmentation. Dalam H. Banke, & A. L. Spitz, Document Anaysis Systems VII (hal. 368-379). New Zealand: Springer International Publishing.
Shi, B., Bai, X., & Yao, C. 2016. An End-to-End Trainable Neural Network for Image-based Sequence Recognation and Its Application to Scene Text Recognation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2298-2304.
Skymind. 2018, Mei 31. A Beginner's Guide to Recurrent Network and LSTMs. Retrieved from Deeplearning4j: https://deeplearning4j.org/lstm.html#recurrent
Sukabumi, D. K. 2018, September 18. Akta Kelahiran - Dukcapil Kabupaten Sukabumi. Retrieved from Dukcapilkabsukabumi: https://www.dukcapilkabsukabumi.org/pelayanan/akta-kelahiran/
Wong, K. Y., Casey, R. G., & Wahl, F. M. 1982. Document Analysis System. IBM Journal of Research and Development, 26(6), 647-656.
Refbacks
- There are currently no refbacks.
Jurnal telah terindeks oleh :