Pembuatan Aplikasi Perdagangan Valas Dengan Metode Elman Neural Network
Keywords:
Concept art, desain karakter, Superhero Indonesia, Chibi, PatriotAbstract
Neural Network technology is a system that functions like thehuman brain. This technology is able to solve intractable
problem with mathematical calculations. In this thesis Elman
neural network is used to predict the value of foreign
currencies in order for helping the traders or investors in
making decisions.
Based on the above problems, the application is made by
utilizing some forex indicators that are often used by traders
to put on the input node in the neural network and the output
node in the form of predictions buy or sell.
From the test results it can be concluded that the selection of
appropriate training time and the greater number of the best
indicators in used can improve the success rate for predicting
currency prices.
References
[1] Seputarforex. 2010. Apa Itu Metatrader. Diakses
tanggal 20 Agustus 2016, dari http://www.seputar
forex.com/belajar/metatrader.
[2] Indrayana, C. H. 2016. Pengenalan Dokumen Jawa
Menggunakan Jaringan Syaraf Tiruan Feedforward
Elam Type Algorithm. Diakses tanggal 18 Desember
2016, dari http://studentjournal.petra.ac.id/index.php/
teknik-informatika/article/view/4072/3727.
[3] MQL4 Reference. Trade Functions. Diakses tanggal 20
Agustus 2016, dari http://docs.mql4.com/trading.
[4] MQL4 Reference. Technical Indicator Functions.
Diakses tanggal 20 Agustus 2016, dari
http://docs.mql4.com/indicators.
[5] MQL4 Reference. The predefined Variables. Diakses
tanggal 20 Agustus 2016, dari http://docs.mql4.com/
predefined.
[6] Harianto, R. 2010. Perancangan dan pembuatan
aplikasi untuk mengenali tanda tangan dengan metode
backpropagation. Diakses tanggal 20 Agustus 2016,
dari http://dewey.petra.ac.id/catalog/ft_detail.php?
knokat=19444.
[7] Antara, P. A. 2013. Model Jaringan Syaraf Tiruan
Backpropagation Dengan Input Berdasarkan Model
Regresi Terbaik. Diakses tanggal 20 Agustus 2016, dari
http://statistik.studentjournal.ub.ac.id/index.php/statisti
k/article/view/3.
[8] Purnamasidhi, W. 2013. Pemodelan jaringan syaraf
tiruan dengan peubah input model arch pada data
return saham untu peramalan volatilitas. Diakses
tanggal 20 Agustus 2016, dari http://statistik.
studentjournal.ub.ac.id/index.php/statistik/article/view/
18.
[9] Harsono, T. I. 2011. Analisis dan implementasi elman
recurrent neural network dan tabu search pada
prediksi harga perak. Diakses tanggal 18 Desember
2016, dari https://openlibrary.telkomuniversity.ac.id/
pustaka/files/95344/resume/analisis-dan-implementasielman-
recurrent-neural-network-dan-tabu-search-padaprediksi-
harga-perak.pdf.
[10] Hilal, M. Pengertian Drawdown. Diakses tanggal 26
Agustus 2016, dari http://www.forexpoin.com/2014/04/
pengertian-drawdown.html.