Sales Forecasting pada Dealer Motor X Dengan LSTM, ARIMA dan Holt-Winters Exponential Smoothing
(1) Program Studi Teknik Informatika, Universitas Kristen Petra Surabaya
(2) Program Studi Teknik Informatika, Universitas Kristen Petra Surabaya
(3) Program Studi Teknik Informatika, Universitas Kristen Petra Surabaya
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
Goyal, P., Pandey, S., & Jain, K. 2018. Deep Learning for
Natural Language Processing: Creating Neural Networks with
Python [E-book]. Apress.
Le, X.-H., Ho, H. V., Lee, G., & Jung, S. 2019. Application of
Long Short-Term Memory (LSTM) Neural Network for Flood
Forecasting. Water, 11(7), 1387. DOI=
https://doi.org/10.3390/w11071387.
Muzaffar, S., & Afshari, A. 2019. Short-Term Load Forecasts
Using LSTM Networks. Energy Procedia, 158, 2922–2927.
DOI= https://doi.org/10.1016/j.egypro.2019.01.952.
Omar, M. S., & Kawamukai, H. 2021. Prediction of NDVI
using the Holt-Winters model in high and low vegetation
regions: A case study of East Africa. Scientific African, 14,
e01020. DOI= https://doi.org/10.1016/j.sciaf.2021.e01020.
Siami-Namini, S., Tavakoli, N., & Siami Namin, A. 2018. A
Comparison of ARIMA and LSTM in Forecasting Time
Series. 2018 17th IEEE International Conference on Machine
Learning and Applications (ICMLA). DOI=
https://doi.org/10.1109/icmla.2018.00227.
Sun, J. 2021. Forecasting COVID-19 pandemic in Alberta,
Canada using modified ARIMA models. Computer Methods
and Programs in Biomedicine Update, 1, 100029. DOI=
https://doi.org/10.1016/j.cmpbup.2021.100029.
Tuovila, A. 2020. Forecasting Definition. Investopedia. URI=
https://www.investopedia.com/terms/f/forecasting.asp.
Refbacks
- There are currently no refbacks.
Jurnal telah terindeks oleh :