Aspect-Based Sentiment Analysis pada Ulasan ECommerce dengan Metode Support Vector Machine untuk Mendapatkan Informasi Sentimen dari Beberapa Aspek
(1) Program Studi Teknik Informatika, Universitas Kristen Petra Surabaya
(2) Program Studi Teknik Informatika, Universitas Kristen Petra Surabaya
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
Cortes, C., & Vapnik, V. (1995). Support-vector networks.
Machine learning, 20(3), 273-297.doi:
https://doi.org/10.1007/BF00994018
Devi, D. N., Kumar, C. K., & Prasad, S. (2016, February). A
feature based approach for sentiment analysis by using
support vector machine. In 2016 IEEE 6th International
Conference on Advanced Computing (IACC), 3-8. doi:
1109/IACC.2016.11.
Finkel, J. R., & Manning, C. D. (2009, August). Nested
named entity recognition. In Proceedings of the 2009
conference on empirical methods in natural language
processing, 141-150.
Joachims, T. (1998). Text categorization with support vector
machines: Learning with many relevant features. European
Conference on Machine Learning, 1398, 137-142.
https://doi.org/10.1007/BFb0026683
Lu, Y., Zhai, C., & Sundaresan, N. (2009). Rated aspect
summarization of short comments. WWW '09: Proceedings
of the 18th international conference on World wide web,
–140. https://doi.org/10.1145/1526709.1526728
Raja, K., & Pushpa, S. (2017). Feature level review table
generation for E-Commerce websites to produce qualitative
rating of the products. Future Computing and Informatics
Journal, 2, 118-124.
https://doi.org/10.1016/j.fcij.2017.09.002
Riany, J., Fajar, M., & Lukman, M. P. (2016). Penerapan
deep sentiment analysis pada angket penilaian terbuka
menggunakan K-Nearest Neighbor. SISFO Vol 6 No 1, 6.
doi: https://doi.org/10.24089/j.sisfo.2016.09.011
Santra, A., & Christy, J. (2012). Genetic Algorithm and
Confusion Matrix for Document Clustering. IJCSI
International Journal of Computer Science Issues, 9(1), 322-
Septiadi, A., & Ramadhani, W. K. (2020). Penerapan Metode
Anova untuk Analisis Rata-rata Produksi Donat, Burger, dan
Croissant pada Toko Roti Animo Bakery. Bulletin of Applied
Industrial Engineering Theory, 1(2720-9628), 60-64.
Setiawan, G., Palit, H., & Setyati, E. (2019). Aspect Based
Sentiment Analysis pada Layanan Umpan Balik Universitas
dengan Menggunakan Metode Naïve Bayes dan Latent
Semantic Analysis. JURNAL INFRA, 7(1), 170-174.
Somantri, O., & Apriliani, D. (2018). Support Vector
Machine Berbasis Feature Selection Untuk Sentiment
Analysis Kepuasan Pelanggan Terhadap Pelayanan Warung
Dan Restoran Kuliner Kota Tegal. Jurnal Teknologi
Informasi dan Ilmu Komputer, 5(2355-7699), 537-547.
25126/jtiik20185867
Tala, F. (2003). A study of stemming effects on information
retrieval in Bahasa Indonesia.
Wahyudi, D., Susyanto, T., & Nugroho, D. (2017).
Implementasi Dan Analisis Algoritma Stemming Nazief &
Adriani Dan Porter Pada Dokumen Berbahasa Indonesia.
Jurnal Ilmiah SINUS, 15(2).
http://dx.doi.org/10.30646/sinus.v15i2.305
Zhang, J., Jin, R., Yang, Y., & Hauptmann, A. (2003).
Modified logistic regression: An approximation to SVM and
its applications in large-scale text categorization. 888-895
Refbacks
- There are currently no refbacks.
Jurnal telah terindeks oleh :