Pengaruh Feature Selection terhadap Kinerja C5.0, XGBoost, dan Random Forest dalam Mengklasifikasikan Website Phishing
(1) Program Studi Teknik Informatika, Universitas Kristen Petra Surabaya
(2) Program Studi Teknik Informatika, Universitas Kristen Petra Surabaya
(3) Program Studi Teknik Informatika, Universitas Kristen Petra Surabaya
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
Aminu, A. A., Abdulrahman, A., Aliyu, A. Y., Aliyu, M., &
Turaki, A. M. 2019. Detection of Phishing WebsitesUsing
Random Forest and XGBOOST Algorithms. International
Journal Of Pure And Applied Sciences, 2(3), 1-11.
Baykara, M., & Gurel, Z. 2018. Detection of phishing
attacks. 2018 6Th International Symposium On Digital
Forensic And Security (ISDFS).
DOI=10.1109/isdfs.2018.8355389.
Berry, M. W., Mohamed, A., & Yap, B. W. (Eds.). 2015.
Soft Computing in Data Science. Communications In
Computer And Information Science, 257. DOI=10.1007/978-
-287-936-3.
Chelvan, V. P. 2022. OCBC says S$13.7 million lost in
phishing scams, up from S$8.5 million. CNA.
URI=https://www.channelnewsasia.com/singapore/ocbcphishing-scam-more-losses-victims-reported-2469086.
Chen, C., Tsai, Y., Chang, F., & Lin, W. 2020. Ensemble
feature selection in medical datasets: Combining filter,
wrapper, and embedded feature selection results. Expert
Systems, 37(5). DOI=10.1111/exsy.12553
Dewi, D. A. W., Cholissodin, I., & Sutrisno. 2019.
Klasifikasi Penyimpangan Tumbuh Kembang Anak
Menggunakan Algoritma C5.0. Jurnal Pengembangan
Teknologi Informasi Dan Ilmu Komputer, 3(10), 10260-
Karo Karo. M., I. 2020. Implementasi Metode XGBoost dan
Feature Importance untuk Klasifikasi pada Kebakaran Hutan
dan Lahan. Journal Of Software Engineering, Information
And Communication Technology, 1(1), 12-13.
Khan, N., Madhav C, N., Negi, A., & Thaseen, I. 2019.
Analysis on Improving the Performance of Machine
Learning Models Using Feature Selection Technique.
Advances In Intelligent Systems And Computing, 69-77.
DOI=10.1007/978-3-030-16660-1_7.
Kumar, J., Santhanavijayan, A., Janet, B., Rajendran, B., &
Bindhumadhava, B. 2020. Phishing Website Classification
and Detection Using Machine Learning. 2020 International
Conference On Computer Communication And Informatics
(ICCCI). DOI=10.1109/iccci48352.2020.9104161.
Machado, L., & Gadge, J. 2017. Phishing Sites Detection
Based on C4.5 Decision Tree Algorithm. 2017 International
Conference On Computing, Communication, Control And
Automation (ICCUBEA).
DOI=10.1109/iccubea.2017.8463818.
Masurkar, S., & Dalal, V. 2020. ENHANCED MODEL FOR
DETECTION OF PHISHING URL USING MACHINE
LEARNING. Ethics And Information Technology (ETIT),
(2), 158-163. DOI=10.26480/etit.02.2020.158.163.
Shah, K., Patel, H., Sanghvi, D., & Shah, M. 2020. A
Comparative Analysis of Logistic Regression, Random
Forest and KNN Models for the Text Classification.
Augmented Human Research, 5(1), 8. DOI=10.1007/s41133-
-00032-0.
Zhang, L., & Zhan, C. 2017. Machine Learning in Rock
Facies Classification: An Application of XGBoost.
International Geophysical Conference, Qingdao, China, 17-
April 2017. DOI=10.1190/igc2017-35
Refbacks
- There are currently no refbacks.
Jurnal telah terindeks oleh :