Pengaruh Feature Selection terhadap Kinerja C5.0, XGBoost, dan Random Forest dalam Mengklasifikasikan Website Phishing
Abstract
Keywords
Full Text:
PDFReferences
Aminu, A. A., Abdulrahman, A., Aliyu, A. Y., Aliyu, M., &
Turaki, A. M. 2019. Detection of Phishing WebsitesUsing
Random Forest and XGBOOST Algorithms. International
Journal Of Pure And Applied Sciences, 2(3), 1-11.
Baykara, M., & Gurel, Z. 2018. Detection of phishing
attacks. 2018 6Th International Symposium On Digital
Forensic And Security (ISDFS).
DOI=10.1109/isdfs.2018.8355389.
Berry, M. W., Mohamed, A., & Yap, B. W. (Eds.). 2015.
Soft Computing in Data Science. Communications In
Computer And Information Science, 257. DOI=10.1007/978-
-287-936-3.
Chelvan, V. P. 2022. OCBC says S$13.7 million lost in
phishing scams, up from S$8.5 million. CNA.
URI=https://www.channelnewsasia.com/singapore/ocbcphishing-scam-more-losses-victims-reported-2469086.
Chen, C., Tsai, Y., Chang, F., & Lin, W. 2020. Ensemble
feature selection in medical datasets: Combining filter,
wrapper, and embedded feature selection results. Expert
Systems, 37(5). DOI=10.1111/exsy.12553
Dewi, D. A. W., Cholissodin, I., & Sutrisno. 2019.
Klasifikasi Penyimpangan Tumbuh Kembang Anak
Menggunakan Algoritma C5.0. Jurnal Pengembangan
Teknologi Informasi Dan Ilmu Komputer, 3(10), 10260-
Karo Karo. M., I. 2020. Implementasi Metode XGBoost dan
Feature Importance untuk Klasifikasi pada Kebakaran Hutan
dan Lahan. Journal Of Software Engineering, Information
And Communication Technology, 1(1), 12-13.
Khan, N., Madhav C, N., Negi, A., & Thaseen, I. 2019.
Analysis on Improving the Performance of Machine
Learning Models Using Feature Selection Technique.
Advances In Intelligent Systems And Computing, 69-77.
DOI=10.1007/978-3-030-16660-1_7.
Kumar, J., Santhanavijayan, A., Janet, B., Rajendran, B., &
Bindhumadhava, B. 2020. Phishing Website Classification
and Detection Using Machine Learning. 2020 International
Conference On Computer Communication And Informatics
(ICCCI). DOI=10.1109/iccci48352.2020.9104161.
Machado, L., & Gadge, J. 2017. Phishing Sites Detection
Based on C4.5 Decision Tree Algorithm. 2017 International
Conference On Computing, Communication, Control And
Automation (ICCUBEA).
DOI=10.1109/iccubea.2017.8463818.
Masurkar, S., & Dalal, V. 2020. ENHANCED MODEL FOR
DETECTION OF PHISHING URL USING MACHINE
LEARNING. Ethics And Information Technology (ETIT),
(2), 158-163. DOI=10.26480/etit.02.2020.158.163.
Shah, K., Patel, H., Sanghvi, D., & Shah, M. 2020. A
Comparative Analysis of Logistic Regression, Random
Forest and KNN Models for the Text Classification.
Augmented Human Research, 5(1), 8. DOI=10.1007/s41133-
-00032-0.
Zhang, L., & Zhan, C. 2017. Machine Learning in Rock
Facies Classification: An Application of XGBoost.
International Geophysical Conference, Qingdao, China, 17-
April 2017. DOI=10.1190/igc2017-35
Refbacks
- There are currently no refbacks.
Jurnal telah terindeks oleh :