Penerapan Machine Learning dalam mendeteksi Fake Account pada Instagram
Abstract
Keywords
Full Text:
PDFReferences
Albayati, M., & Altamimi, A. (2019). Identifying Fake
Facebook Profiles Using Data Mining Techniques. Journal
Of ICT Research And Applications, 13(2), 107-117.
https://doi.org/10.5614/itbj.ict.res.appl.2019.13.2.2
Bakhshandeh, B. (2019). Instagram fake spammer genuine
accounts. Kaggle.com. Retrieved 3 January 2022, from
https://www.kaggle.com/datasets/free4ever1/instagramfake-spammer-genuine-accounts?select=train.csv.
Berrar, D. (2019). Cross-Validation. Encyclopedia Of
Bioinformatics And Computational Biology, 1, 542-545.
https://doi.org/10.1016/b978-0-12-809633-8.20349-x
Boerman, S. (2020). The effects of the standardized
instagram disclosure for micro- and mesoinfluencers. Computers In Human Behavior, 103, 199-207.
https://doi.org/10.1016/j.chb.2019.09.015
Breiman, L. (2001). Random Forests. Machine
Learning, 45(1), 5-32.
https://doi.org/10.1023/a:1010933404324
Jiang, X., Li, Q., Ma, Z., Dong, M., Wu, J., & Guo, D. (2018).
QuickSquad: A new single-machine graph computing
framework for detecting fake accounts in large-scale social
networks. Peer-To-Peer Networking And
Applications, 12(5), 1385-1402.
https://doi.org/10.1007/s12083-018-0697-2
Hastie, T., Rosset, S., Zhu, J., & Zou, H. (2009). Multi-class
AdaBoost. Statistics And Its Interface, 2(3), 349-360.
https://doi.org/10.4310/sii.2009.v2.n3.a8
Kumar, A. (2020). The Ultimate Guide to AdaBoost
Algorithm | What is AdaBoost Algorithm?. GreatLearning
Blog: Free Resources what Matters to shape your Career!.
Retrieved 7 January 2022, from
https://www.mygreatlearning.com/blog/adaboostalgorithm/#How%20Does%20AdaBoost%20Work?.
Most used social media 2021 | Statista. Statista. (2022).
Retrieved 11 December 2021, from
https://www.statista.com/statistics/272014/global-socialnetworks-ranked-by-number-of-users/.
Narkhede, S. (2018). Understanding Confusion Matrix.
Medium. Retrieved 5 January 2022, from
https://towardsdatascience.com/understanding-confusionmatrix-a9ad42dcfd62
Pradana, G. (2021). Web Scraping Pengertian, Teknik,
Manfaat dan Kendala adalah. Ngalup Collaborative
Network. Retrieved 5 January 2022, from
https://ngalup.co/articles/pengertian-teknik-manfaatkendala-web-scraping/.
Purba, K., Asirvatham, D., & Murugesan, R. (2020).
Classification of instagram fake users using supervised
machine learning algorithms. International Journal Of
Electrical And Computer Engineering (IJECE), 10(3), 2763.
https://doi.org/10.11591/ijece.v10i3.pp2763-2772
Ramalingam, D., & Chinnaiah, V. (2018). Fake profile
detection techniques in large-scale online social networks: A
comprehensive review. Computers & Electrical
Engineering, 65, 165-177.
https://doi.org/10.1016/j.compeleceng.2017.05.020
Reddy, V. (2018). Sentiment Analysis using SVM. Medium.
Retrieved 3 January 2022, from
https://medium.com/@vasista/sentiment-analysis-usingsvm-338d418e3ff1.
Ruslidiantoro, A. (2021). Overfitting dan Underfitting.
Medium. Retrieved 31 April 2022, from
https://ariprusli.medium.com/overfitting-dan-underfitting7f9e686aa97d.
Pamungkas, R, I., & Lailiyah, N. (2019). PRESENTASI
DIRI PEMILIK DUA AKUN INSTAGRAM DI AKUN
UTAMA DAN AKUN ALTER. Interaksi Online, 7(4), 371-
Retrieved from
https://ejournal3.undip.ac.id/index.php/interaksionline/article/view/24960
Rish, I. (2001). An empirical study of the naive Bayes
classifier. In IJCAI 2001 workshop on empirical methods in
artificial intelligence (Vol. 3, No. 22, pp. 41-46).
Shaikh, S. (2021). GitHub - shaikhsajid1111/social-mediaprofile-scrapers: Fetch user's data across social media.
GitHub. Retrieved 1 March 2022, from
https://github.com/shaikhsajid1111/social-media-profilescrapers.
Sheikhi, S. (2020). An Efficient Method for Detection of
Fake Accounts on the Instagram Platform. Revue
D'intelligence Artificielle, 34(4), 429-436.
https://doi.org/10.18280/ria.340407
Shin, T. (2021). Understanding Feature Importance and
How to Implement it in Python. Medium. Retrieved 11 May
, from https://towardsdatascience.com/understandingfeature-importance-and-how-to-implement-it-in-pythonff0287b20285#:~:text=Feature%20Importance%20refers%2
to%20techniques,to%20predict%20a%20certain%20variab
le.
Sutter, B., Chiong, R., Budhi, G., & Dhakal, S. (2021).
Predicting Psychological Distress from Ecological Factors: A
Machine Learning Approach. Advances And Trends In
Artificial Intelligence. Artificial Intelligence Practices, 341-
https://doi.org/10.1007/978-3-030-79457-6_30
Twin, A. (2021). How Overfitting Works. Investopedia.
Retrieved May 14, 2021, from
https://www.investopedia.com/terms/o/overfitting.asp.
Wanda, P., Hiswati, M., Diqi, M., & Herlinda, R. (2021). ReFake: Klasifikasi Akun Palsu di Sosial Media Online
menggunakan Algoritma RNN. Prosiding Seminar Nasional
Sains Teknologi Dan Inovasi Indonesia (SENASTINDO), 3,
-200. https://doi.org/10.54706/senastindo.v3.2021.139
Yiu, T. (2019). Understanding Random Forest. Retrieved
May 16, 2021, from
https://towardsdatascience.com/understanding-randomforest-58381e0602d2.
Refbacks
- There are currently no refbacks.
Jurnal telah terindeks oleh :