Penerapan Metode KNN-Regresi dan Multiplicative Decomposition untuk Prediksi Data Penjualan pada Supermarket X
Keywords:
Diesel, Injection Timing, Fuel pressure, Boost Pressure, Piggyback, ECUAbstract
Supermarket X is one of the supermarkets in West Nusa Tenggara that needs a way to predict sales in the future. This prediction is needed by Supermarket X to estimate the purchase plan because so far there have been frequent stockouts or oversupply which have caused losses to the company. Based on the problems that occur, this study applies the KNN Regression and Multiplicative Decomposition methods in predicting Supermarket X sales so that supermarket managers can design a strategy to make sales in the future. The results show that predictions based on divisions, departments, categories, sub categories, and products have a smaller average error rate when using the Multiplicative Decomposition method with RMSE = 492.89 and MAPE = 0.29, while the KNN Regression method has RMSE= 757.77 and MAPE= 0.36References
[1] Ayuni, G. N., & Fitrianah, D. (2019). Penerapan Metode
Regresi Linear Untuk Prediksi Penjualan Properti pada PT
XYZ. Jurnal Telematika, 14(2), 79-86.
[2] Azis, F., Defiyanti, S., & Sari, B. N. (2018). Perbandingan
Algoritma Cart Dan K-Nearest Neighbor. Technology
Acceptance Model, 9(2), 74-78.
[3] Budi, E., Santoso, L. W., & Dewi, L. P. (2019). Perancangan
Dan Pembuatan Data Warehouse Dan Business Intelligence
Pada Market Research Motorcycle Honda Mpm Motor. Jurnal
Infra Universitas Kristen Petra, 7(2), 88-94.
[4] Bustomy , M. I. (2020). Implementasi Business Intelligence
untuk Prestasi Mahasiswa STTI NIIT. Jurnal JI-Tech, 16(1),
1-11.
[5] Cristian, M. (2018). Average Monthly Rainfall Forecast in
Romania by Using K-Nearest Neighbors Regression. Annals -
Economy Series, (4).
[6] Darmayanti, I., Subarkah, P., Anunggilarso, L. R., &
Suhaman, J. (2021). Prediksi Potensi Siswa Putus Sekolah
Akibat Pandemi Covid-19 Menggunakan Algoritme KNearest Neighbor. Jurnal Sains dan Teknologi, 10(2).
DOI=10.23887/jstundiksha.v10i2.39151.
[7] Hasmawati, Nangi, J., & Muchtar, M. (2017). Aplikasi
Prediksi Penjualan Barang Menggunakan Metode K-Nearest
Neighbor(Knn) (Studi Kasus Tumaka Mart). semanTIK.
[8] Hijriani, A., Aprilliana, E., Pribadi, R. I., & Sakethi, D. (2020).
Business Intelligence Dashboard (BID) Pada Usaha Mikro
Bidang Retail Studi Kasus CV Duta Square Bandar Lampung.
Jurnal Manajemen dan Teknologi Informatika, 10(1), 11-
18. DOI=10.31940/matrix.v10i1.1616.
[9] Indarwati, T., Irawati, T., & Rimawati, E. (2018). Penggunaan
Metode Linear Regression Untuk Prediksi Penjualan
Smartphone. Jurnal Teknologi Informasi dan Komunikasi
Sinar Nusantara, 6(2). DOI=10.30646/tikomsin.v6i2.369.
[10] Kristiyanti, D. A., & Sumarno, Y. (2020). Penerapan Metode
Multiplicative Decomposition (Seasonal) Untuk Peramalan
Persediaan Barang Pada PT. Agrinusa Jaya Santosa. Jurnal
Sistem Komputer dan Kecerdasan Buatan, 3(2), 45-51.
[11] Nanja, M., & Purwanto. (2015). Metode K-Nearest Neighbor
Berbasis orward Selection Untuk Prediksi Harga Komoditi
Lada. Jurnal Pseudocode, 2(1), 53-64.
DOI=10.33369/pseudocode.2.1.53-64.
[12] Saputra, I., Alkadri, S., & Insani, R. W. (2021). Sistem
Pendukung Keputusan Pemilihan Penerima Beasiswa
Universitas Muhammadiyah Pontianak Menggunakan Metode
Fuzzy Mamdani. Digital Intelligence, 2(1).
DOI=10.29406/diligent.v2i1.2903.
[13] Seruni, D., Furqon, M., & Wihandika, R. (2020). Sistem
Prediksi Pertumbuhan Jumlah Penduduk Kota Malang
menggunakan Metode K-Nearest Neighbor Regression.
Jurnal Pengembangan Teknologi Informasi dan Ilmu
Komputer, 4(4), 1075-1082.
[14] Supardi, R. (2020). Penerapan Metode Regresi Linear Dalam
Memprediksi Data Penjualan Barang Di Toko Bangunan Vita
Viya. Journal of Technopreneurship and Information System
(JTIS), 3(1), 11-18. DOI=10.36085/jtis.v3i1.629.
[15] Syaifulloh, A. (2018). Perbandingan 6 Metode Forecasting
Dalam Peramalan Jumlah Maba Stmik Ppkia Pradnya
Paramita Malang. Teknologi Informasi: Teori, Konsep, dan
Implementasi: Jurnal Ilmiah, 9(2), 91-98.
[16] Tanuwijaya, J., & Hansun, S. (2019). LQ45 Stock Index
Prediction using k-Nearest Neighbors Regression.
International Journal of Recent Technology and Engineering
(IJRTE), 8(3), 2388 - 2391.
DOI=10.35940/ijrte.C4663.098319.