Penerapan Metode KNN-Regresi dan Multiplicative Decomposition untuk Prediksi Data Penjualan pada Supermarket X

Authors

  • Calvin Christopher Kurniawan Program Studi Teknik Informatika, Universitas Kristen Petra Surabaya
  • Silvia Rostianingsih Program Studi Teknik Informatika, Universitas Kristen Petra Surabaya
  • Leo Willyanto Santoso Program Studi Teknik Informatika, Universitas Kristen Petra Surabaya

Keywords:

Diesel, Injection Timing, Fuel pressure, Boost Pressure, Piggyback, ECU

Abstract

Supermarket X is one of the supermarkets in West Nusa Tenggara that needs a way to predict sales in the future. This prediction is needed by Supermarket X to estimate the purchase plan because so far there have been frequent stockouts or oversupply which have caused losses to the company. Based on the problems that occur, this study applies the KNN Regression and Multiplicative Decomposition methods in predicting Supermarket X sales so that supermarket managers can design a strategy to make sales in the future. The results show that predictions based on divisions, departments, categories, sub categories, and products have a smaller average error rate when using the Multiplicative Decomposition method with RMSE = 492.89 and MAPE = 0.29, while the KNN Regression method has RMSE= 757.77 and MAPE= 0.36

References

[1] Ayuni, G. N., & Fitrianah, D. (2019). Penerapan Metode

Regresi Linear Untuk Prediksi Penjualan Properti pada PT

XYZ. Jurnal Telematika, 14(2), 79-86.

[2] Azis, F., Defiyanti, S., & Sari, B. N. (2018). Perbandingan

Algoritma Cart Dan K-Nearest Neighbor. Technology

Acceptance Model, 9(2), 74-78.

[3] Budi, E., Santoso, L. W., & Dewi, L. P. (2019). Perancangan

Dan Pembuatan Data Warehouse Dan Business Intelligence

Pada Market Research Motorcycle Honda Mpm Motor. Jurnal

Infra Universitas Kristen Petra, 7(2), 88-94.

[4] Bustomy , M. I. (2020). Implementasi Business Intelligence

untuk Prestasi Mahasiswa STTI NIIT. Jurnal JI-Tech, 16(1),

1-11.

[5] Cristian, M. (2018). Average Monthly Rainfall Forecast in

Romania by Using K-Nearest Neighbors Regression. Annals -

Economy Series, (4).

[6] Darmayanti, I., Subarkah, P., Anunggilarso, L. R., &

Suhaman, J. (2021). Prediksi Potensi Siswa Putus Sekolah

Akibat Pandemi Covid-19 Menggunakan Algoritme KNearest Neighbor. Jurnal Sains dan Teknologi, 10(2).

DOI=10.23887/jstundiksha.v10i2.39151.

[7] Hasmawati, Nangi, J., & Muchtar, M. (2017). Aplikasi

Prediksi Penjualan Barang Menggunakan Metode K-Nearest

Neighbor(Knn) (Studi Kasus Tumaka Mart). semanTIK.

[8] Hijriani, A., Aprilliana, E., Pribadi, R. I., & Sakethi, D. (2020).

Business Intelligence Dashboard (BID) Pada Usaha Mikro

Bidang Retail Studi Kasus CV Duta Square Bandar Lampung.

Jurnal Manajemen dan Teknologi Informatika, 10(1), 11-

18. DOI=10.31940/matrix.v10i1.1616.

[9] Indarwati, T., Irawati, T., & Rimawati, E. (2018). Penggunaan

Metode Linear Regression Untuk Prediksi Penjualan

Smartphone. Jurnal Teknologi Informasi dan Komunikasi

Sinar Nusantara, 6(2). DOI=10.30646/tikomsin.v6i2.369.

[10] Kristiyanti, D. A., & Sumarno, Y. (2020). Penerapan Metode

Multiplicative Decomposition (Seasonal) Untuk Peramalan

Persediaan Barang Pada PT. Agrinusa Jaya Santosa. Jurnal

Sistem Komputer dan Kecerdasan Buatan, 3(2), 45-51.

[11] Nanja, M., & Purwanto. (2015). Metode K-Nearest Neighbor

Berbasis orward Selection Untuk Prediksi Harga Komoditi

Lada. Jurnal Pseudocode, 2(1), 53-64.

DOI=10.33369/pseudocode.2.1.53-64.

[12] Saputra, I., Alkadri, S., & Insani, R. W. (2021). Sistem

Pendukung Keputusan Pemilihan Penerima Beasiswa

Universitas Muhammadiyah Pontianak Menggunakan Metode

Fuzzy Mamdani. Digital Intelligence, 2(1).

DOI=10.29406/diligent.v2i1.2903.

[13] Seruni, D., Furqon, M., & Wihandika, R. (2020). Sistem

Prediksi Pertumbuhan Jumlah Penduduk Kota Malang

menggunakan Metode K-Nearest Neighbor Regression.

Jurnal Pengembangan Teknologi Informasi dan Ilmu

Komputer, 4(4), 1075-1082.

[14] Supardi, R. (2020). Penerapan Metode Regresi Linear Dalam

Memprediksi Data Penjualan Barang Di Toko Bangunan Vita

Viya. Journal of Technopreneurship and Information System

(JTIS), 3(1), 11-18. DOI=10.36085/jtis.v3i1.629.

[15] Syaifulloh, A. (2018). Perbandingan 6 Metode Forecasting

Dalam Peramalan Jumlah Maba Stmik Ppkia Pradnya

Paramita Malang. Teknologi Informasi: Teori, Konsep, dan

Implementasi: Jurnal Ilmiah, 9(2), 91-98.

[16] Tanuwijaya, J., & Hansun, S. (2019). LQ45 Stock Index

Prediction using k-Nearest Neighbors Regression.

International Journal of Recent Technology and Engineering

(IJRTE), 8(3), 2388 - 2391.

DOI=10.35940/ijrte.C4663.098319.

Downloads

Published

2022-08-29

Issue

Section

Articles