Prediksi Harga Saham Yang Bersifat Siklikal Di Indonesia Menggunakan Metode LSTM dan SVM
Abstract
Keywords
Full Text:
PDFReferences
Althelaya, Khaled A., El-Sayed M. El-Alfy, and Salahadin
Mohammed. "Stock market forecast using multivariate
analysis with bidirectional and stacked (LSTM,
GRU)." 2018 21st Saudi Computer Society National
Computer Conference (NCC). IEEE, 2018. DOI:
1109/NCG.2018.8593076
Fischer, T., & Krauss, C. (2017). Deep learning with long
short-term memory. Discussion Papers.
Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term
Memory. DOI: 10.1162/neco.1997.9.8.1735
Hakob, G. (2016). A Stock Market Prediction Method
Based on Support Vector Machines.
Karmiani, D., Kazi, R., Nambisan, A., Shah, A., & Kamble,
V. (2019). Comparison of Predictive Algorithms:
Backpropagation, SVM, LSTM and Kalman Filter for Stock
Market. DOI: 10.1109/AICAI.2019.8701258
Lasek, A., Cercone, N., & Saunders, J. (2016). SMART
RESTAURANTS. SOURVEY ON CUSTOMER DEMAND
AND SALES FORCASTING. DOI: 10.1016/B978-0-12-
-5.00017-1
Nikou, M., Mansourfar, G., & Bagherzadeh, J. (2019).
Stock price prediction using DEEP learning algorithm and
its. DOI: 10.1002/isaf.1459
Roy, K., Kar, S., Narayan, R., & Das. (2015). Chapter 6 -
Selected Statistical Methods in QSAR. Understanding the
Basics of QSAR for Applications in Pharmaceutical
Sciences and Risk Assessment, 191-229.
Siami-Namini, S., Tavakoli, N., & Namin, A. S. (2018). A
Comparison of ARIMA and LSTM in Forecasting Time
Series. DOI: 10.1109/ICMLA.2018.00227
Viadinugroho, R. A., & Rosadi, D. (2021). Long ShortTerm Memory Neural Network Model for Time. Journal of
Physics: Conference Series. ISSN: 2613-9189
Refbacks
- There are currently no refbacks.
Jurnal telah terindeks oleh :