Pewarnaan Otomatis Sketsa Gambar Menggunakan Metode Conditional GAN Untuk Mempercepat Proses Pewarnaan
Abstract
Keywords
Full Text:
PDFReferences
Bond, J.-M. 2021, January 27. A brief history of anime
genres, culture, and evolution. The Daily Dot. Retrieved
August 16, 2021, from
https://www.dailydot.com/parsec/what-is-anime/
Bynagari, N. B. 2019. GANs Trained by a Two Time-Scale
Update Rule Converge to a Local Nash Equilibrium. Asian Journal of Applied Science and Engineering.
https://doi.org/ISSN 2305-915X(p); 2307-9584(e)
Ci, Y., Ma, X., Wang, Z., Li, H., & Luo, Z. 2018. Userguided deep anime line art colorization with conditional
adversarial networks. Proceedings of the 26th ACM
International Conference on Multimedia.
https://doi.org/10.1145/3240508.3240661
Creswell, A., White, T., Dumoulin, V., Arulkumaran, K.,
Sengupta, B., & Bharath, A. A. 2018. Generative adversarial
networks: An overview. IEEE Signal Processing Magazine,
(1), 53–65. https://doi.org/10.1109/msp.2017.2765202
Frans, K. 2017. Outline Colorization through Tandem
Adversarial Networks. https://doi.org/arXiv:1704.08834
Goodfellow, I. J., Bengio, Y., Courville, A., Ozair, S.,
Warde-Farley, D., Xu, B., Mirza, M., & Pouget-Abadie, J.
Generative Adversarial Nets. Advances in Neural
Information Processing Systems.
Hensman, P., & Aizawa, K. 2017. cGAN-Based manga
Colorization using a single training image. 2017 14th IAPR
International Conference on Document Analysis and
Recognition (ICDAR).
https://doi.org/10.1109/icdar.2017.295
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., &
Hochreiter, S. 2018. Advances in neural information
processing systems. GANs Trained by a Two Time-Scale
Update Rule Converge to a Local Nash Equilibrium.
Karras, T., Aila, T., Laine, S., & Lehtinen, J. 2018.
Progressive Growing of GANs for Improved Quality,
Stability, and Variation. https://doi.org/arXiv:1710.10196
Kim, T. 2018, December 14. Anime sketch colorization pair.
Kaggle. Retrieved December 16, 2021, from
https://www.kaggle.com/ktaebum/anime-sketch-colorizationpair
Liu, Y., Qin, Z., Wan, T., & Luo, Z. 2018. Auto-painter:
Cartoon image generation from sketch by using conditional
Wasserstein generative adversarial networks.
Neurocomputing, 311, 78–87.
https://doi.org/10.1016/j.neucom.2018.05.045
Nazeri, K., Ng, E., & Ebrahimi, M. 2018. Image colorization
using generative adversarial networks. Articulated Motion
and Deformable Objects, 85–94. https://doi.org/10.1007/978-
-319-94544-6_9
Sun, Q., Chen, Y., Tao, W., Jiang, H., Zhang, M., Chen, K.,
& Erdt, M. 2021. A gan-based approach toward architectural
line Drawing colorization Prototyping. The Visual Computer.
https://doi.org/10.1007/s00371-021-02219-x
Refbacks
- There are currently no refbacks.
Jurnal telah terindeks oleh :