Sistem Pendukung Keputusan Pemberian Kredit berdasarkan Klasifikasi Kelancaran Pembayaran Kredit Menggunakan Metode VIKOR pada Bank XYZ
Abstract
Banks must carry out complex assessments before being able to determine who is the most eligible prospective debtor who can be given a loan. This is due to limited funds and the risk of bad credit cases. The limited manpower and manual processes cause the whole process of lending at XYZ Bank to be prone to human error and become inefficient. As a solution for XYZ Bank to overcome existing problems, a credit decision support system is needed that can assist XYZ Bank in selecting and determining prospective debtors who can be given loans. Therefore, in this study, the KNearest Neighbor method was used to assist XYZ Bank in predicting the smoothness of credit payments of a prospective debtor. Then, this research continues with ranking using the VIKOR method to determine who is the most ideal debtor candidate to be given a loan. Based on the results of the classification test using both training data and new data, the highest accuracy is obtained at 100% for each type of loan. Based on the results of the ranking test, the accuracy of the business loans ranking is 83.33%, the accuracy of the consumer loans ranking is 80.33%, and the accuracy of the various-purpose loans ranking is 70%. The results of the questionnaire evaluation in system testing conducted by 6 respondents assessed that the application design was 76.67% good, the application functionality was 86.67% good, the ease of use of the application was 83.33% good, the application answered the needs was 86.67% good, and the overall application was 90% good.References
[1] Amelia, L., & Marlius, D. (2018). Pengendalian kredit dalam
upaya menciptakan bank yang sehat pada PT. Bank
Pembangunan Daerah Sumatera Barat cabang utama
Padang. Padang: Akademi Keuangan dan Perbankan Padang.
[2] Baharuddin, M. M., Hasanuddin, T., & Azis, H. (2019).
Analisis performa metode k-nearest neighbor untuk
identifikasi jenis kaca. Ilkom Jurnal Ilmiah, 11(3), 269-274.
DOI= https://doi.org/10.33096/ilkom.v11i3.489.269-274.
[3] Fauzan, R., Indrasari, Y., & Muthia, N. (2017). Sistem
pendukung keputusan penerimaan beasiswa bidikmisi di
POLIBAN dengan metode SAW berbasis web. JOIN (Jurnal Online Informatika), 2(2), 79-83. DOI=
https://doi.org/10.15575/join.v2i2.101.
[4] Fikri, M. I., Sabrila, T. S., & Azhar, Y. (2020). Perbandingan
metode naïve bayes dan support vector machine pada analisis
sentimen twitter. Jurnal SMATIKA, 10(2), 71-76. DOI=
https://doi.org/10.33365/jtsi.v2i3.906.
[5] Kurniawan, Y., & Barokah, T. (2020). Klasifikasi penentuan
pengajuan kartu kredit menggunakan k-nearest neighbor.
Jurnal Ilmiah Matrik, 22(1), 73-82. DOI=
https://doi.org/10.33557/jurnalmatrik.v22i1.843.
[6] Kusdiantoro. (2012). Analisis usability website akademik di
Indonesia menggunakan metode promethee, vikor, dan
electree. Yogyakarta: Universitas Negeri Yogyakarta.
[7] Limbong, T., Mutaqqin, Iskandar, A., Windarto, A. P.,
Simarmata, J., Mesran, ... Wanto, A. (2020). Sistem
pendukung keputusan: metode dan implementasi. Medan:
Yayasan Kita Menulis.
[8] Naufar, & Warih. (2011). Analisis dan implementasi
klasifikasi data mining menggunakan jaringan syaraf tiruan
dan evolution strategis. Bandung: Universitas Telkom.
[9] Rao, R. V. (2008). Decision making in the manufacturing
environment: Using graph theory and fuzzy multiple attribute
decision making methods. Gujarat: Sardar Vallabhbhai
National Institute of Technology.
[10] Rumus Statistik. (n.d.). Cara menghitung MAPE (mean
absolute percentage error) di excel dan r. Retrieved July 4,
2022, from https://www.rumusstatistik.com/2021/05/caramenghitung-mape-mean-absolute.html
[11] Styandi, A., Syauqy, D., & Kurniawan, W. (2019).
Klasifikasi umur padi berdasarkan data sensor warna dengan
menggunakan metode K-NN. Jurnal Pengembangan
Teknologi Informasi Dan Ilmu Komputer, 3(9), 8343-8350.
Retrieved July 4, 2022, from https://jptiik.ub.ac.id/index.php/j-ptiik/article/view/6140
[12] Ying-Yu, W., & De-Jian, Y. (2011). Extended VIKOR for
multicriteria decision making problems under intuitionistic
environment. International Conference of Management and
Science Engineering, Annual Conference Proceeding, 118-
122. DOI= 10.1109/ICMSE.2011.6069952.