Prediksi Kebutuhan Darah Menggunakan Metode ARIMA Dengan Mempertimbangkan Faktor Deterioration
Abstract
Blood has various uses that are very important for the human body. However, blood can only be donated in limited quantities because it can only be produced by humans. This blood donation activity is organized by the Blood Transfusion Unit (UTD), one of which is UTD PMI Surabaya. UTD PMI Surabaya also produces and stores blood products and distributes them to hospitals or directly to patients who need blood. Due to the uncertain amount of blood demand, UTD PMI Surabaya needs to make predictions in order to meet the blood needs. But blood has an expiry that also needs to be considered. Meanwhile, the blood demand prediction system still uses human estimates. Therefore, an information system is needed that can assist in predicting the need for blood by considering the expiration date of the blood. The application made in this research is a web application that can assist in making predictions using the ARIMA method. Then a calculation will be carried out by considering the deterioration of the blood to determine the need for blood in the next month. Based on the test results, the application is able to predict blood needs. The ARIMA model used to predict WB blood components is ARIMA (7,0,6) with a RMSE of 58,91. While the ARIMA model used to predict the TC blood component is ARIMA (5,0,6) with a RMSE of 272,46.References
[1] Agus Sugianto, C., & Muhammad Zundi, T. (2017). Rancang
Bangun Aplikasi Donor Darah Berbasis Mobile di PMI
Kabupaten Bandung. KOPERTIP: Jurnal Ilmiah Manajemen
Informatika dan Komputer, 1(1), 11–18. DOI:
10.32485/kopertip.v1i1.5
[2] Cong, J., Ren, M., Xie, S., & Wang, P. (2019). Predicting
seasonal influenza based on SARIMA model, in mainland
China from 2005 to 2018. International Journal of
Environmental Research and Public Health, 16(23), 1–8.
DOI:10.3390/ijerph16234760
[3] Djoni, H. (2011). Penerapan Model Arima Untuk
Memprediksi Application Of Arima To Forecasting Stock
Price Of PT Telokm Tbk. Jurnal Ilmiah Sains, 11(1), 117–
119. DOI: 10.35799/jis.11.1.2011.53
[4] Eka, W., & Agus, D. (2012). Analisis Peramalan Kombinasi
Terhadap Jumlah Permintaan Darah di Surabaya. 1(1), 1–5.
DOI: 10.12962/j23373520.v1i1.573
[5] Nasyika, D., Slamin, S., & Pandunata, P. (2019). Sistem
Prediksi Jumlah Permintaan Produk Darah Menggunakan
Metode Least Square Regression Line (Studi Kasus : Utd Pmi
Kabupaten Jombang). INFORMAL: Informatics Journal,
3(2), 48. DOI:10.19184/isj.v3i2.9989
[6] Profita, A. (2017). Optimasi Manajemen Persediaan Darah
Menggunakan Simulasi Monte Carlo. Journal of Industrial
Engineering Management, 2(1), 16.
DOI:10.33536/jiem.v2i1.101