Pengenalan Rambu Lalu Lintas di Indonesia Secara Realtime Menggunakan YOLOv4-tiny
Abstract
Keywords
Full Text:
PDFReferences
Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020).
Yolov4: Optimal speed and accuracy of object detection.
arXiv preprint arXiv:2004.10934. DOI:
48550/arXiv.2004.10934
Dai, J., Li, Y., He, K., & Sun, J. (2016). R-fcn: Object
detection via region-based fully convolutional networks.
Advances in neural information processing systems, 29. DOI:
48550/arXiv.1605.06409
He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask
r-cnn. In Proceedings of the IEEE international conference on
computer vision (pp. 2961-2969). DOI:
48550/arXiv.1703.06870
Houben, S., Stallkamp, J., Salmen, J., Schlipsing, M., & Igel,
C. (2013, August). Detection of traffic signs in real-world
images: The German Traffic Sign Detection Benchmark. In
The 2013 international joint conference on neural networks
(IJCNN) (pp. 1-8). IEEE. DOI:
1109/IJCNN.2013.6706807
Huang, Z., Yu, Y., Gu, J., & Liu, H. (2016). An efficient
method for traffic sign recognition based on extreme learning
machine. IEEE transactions on cybernetics, 47(4), 920-933.
DOI: 10.1109/TCYB.2016.2533424
Karaduman, M., & Eren, H. (2017, October). Deep learning
based traffic direction sign detection and determining driving
style. In 2017 International Conference on Computer Science
and Engineering (UBMK) (pp. 1046-1050). IEEE. DOI:
1109/UBMK.2017.8093453
Kuang, X., Fu, W., & Yang, L. (2018). Real-Time Detection
and Recognition of Road Traffic Signs using MSER and
Random Forests. International Journal of Online and
Biomedical Engineering (iJOE), 14(03), pp. 34–51. DOI:
3991/ijoe.v14i03.7925
Li, D., Zhao, D., Chen, Y., & Zhang, Q. (2018, July).
Deepsign: Deep learning based traffic sign recognition. In
international joint conference on neural networks
(IJCNN) (pp. 1-6). IEEE. DOI:
1109/IJCNN.2018.8489623
Lin, C., Li, L., Luo, W., Wang, K. C., & Guo, J. (2019).
Transfer learning based traffic sign recognition using
inception-v3 model. Periodica Polytechnica Transportation
Engineering, 47(3), 242-250. DOI: 10.3311/PPtr.11480
Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., &
Belongie, S. (2017). Feature pyramid networks for object
detection. In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 2117-2125). DOI:
48550/arXiv.1612.03144
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu,
C. Y., & Berg, A. C. (2016, October). Ssd: Single shot
multibox detector. In European conference on computer
vision (pp. 21-37). Springer, Cham. DOI:
48550/arXiv.1512.02325
Liu, Z., Qi, M., Shen, C., Fang, Y., & Zhao, X. (2021).
Cascade saccade machine learning network with hierarchical
classes for traffic sign detection. Sustainable Cities and
Society, 67, 102700. DOI: 10.1016/j.scs.2020.102700
Pon, A., Adrienko, O., Harakeh, A., & Waslander, S. L. (2018,
May). A hierarchical deep architecture and mini-batch
selection method for joint traffic sign and light detection. In
15th Conference on Computer and Robot Vision (CRV)
(pp. 102-109). IEEE. DOI: 10.1109/CRV.2018.00024.
Ramík, D. M., Sabourin, C., Moreno, R., & Madani, K.
(2014). A machine learning based intelligent vision system for
autonomous object detection and recognition. Applied
intelligence, 40(2), 358-375. DOI: 10.1007/s10489-013-
-5
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016).
You only look once: Unified, real-time object detection. In
Proceedings of the IEEE conference on computer vision and
pattern recognition (pp. 779-788). DOI:
1109/CVPR.2016.91
Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn:
Towards real-time object detection with region proposal
networks. Advances in neural information processing
systems, 28. DOI: 10.48550/arXiv.1506.01497
Swathi, M., & Suresh, K. V. (2017, February). Automatic
traffic sign detection and recognition: A review. In 2017
International Conference on Algorithms, Methodology,
Models and Applications in Emerging Technologies
(ICAMMAET) (pp. 1-6). IEEE. DOI:
1109/ICAMMAET.2017.8186650
Tabernik, D., & Skočaj, D. (2019). Deep learning for largescale traffic-sign detection and recognition. IEEE transactions
on intelligent transportation systems, 21(4), 1427-1440. DOI:
1109/TITS.2019.2913588
Wang, C. Y., Bochkovskiy, A., & Liao, H. Y. M. (2021).
Scaled-yolov4: Scaling cross stage partial network. In
Proceedings of the IEEE/cvf conference on computer vision
and pattern recognition (pp. 13029-13038). DOI:
1109/cvpr46437.2021.01283
Yang, Y., Luo, H., Xu, H., & Wu, F. (2015). Towards realtime traffic sign detection and classification. IEEE
Transactions on Intelligent transportation systems, 17(7),
-2031. DOI: 10.1109/TITS.2015.2482461
Zang, D., Wei, Z., Bao, M., Cheng, J., Zhang, D., Tang, K., &
Li, X. (2018). Deep learning–based traffic sign recognition for
unmanned autonomous vehicles. Proceedings of the
Institution of Mechanical Engineers, Part I: Journal of
Systems and Control Engineering, 232(5), 497-505. DOI:
1177/0959651818758865
Zhang, B., Wang, G., Wang, H., Xu, C., Li, Y., & Xu, L.
(2021). Detecting small chinese traffic signs via improved
yolov3 method. Mathematical Problems in Engineering,
DOI: 10.1155/2021/8826593
Zhao, Z. Q., Zheng, P., Xu, S. T., & Wu, X. (2019). Object
detection with deep learning: A review. IEEE transactions on
neural networks and learning systems, 30(11), 3212-3232.
DOI: 10.1109/TNNLS.2018.2876865
Zhu, Z., Liang, D., Zhang, S., Huang, X., Li, B., & Hu, S.
(2016). Traffic-sign detection and classification in the wild. In
Proceedings of the IEEE conference on computer vision and
pattern recognition (pp. 2110-2118). DOI:
1109/cvpr.2016.232
Refbacks
- There are currently no refbacks.
Jurnal telah terindeks oleh :