Penerapan Artificial Neural Network dan Rule Based Classifier untuk Mengklasifikasikan Pendonor Darah Potensial pada Sistem Broadcast Pendonor

Widya Arditanti, Andreas Handojo, Tanti Octavia

Abstract


One of UTD PMI Surabaya’s task is to provide safe and quality blood when blood is needed in an emergency. The availability of blood at UTD PMI Surabaya can be erratic, because it depends on the number of donors that fluctuates and the storage time of blood is not long. Therefore, UTD PMI Surabaya needs a system to invite potential donors to meet blood needs when needed in an emergency, by minimizing blood wasted. The classification model and the creation of a recommendation system will produce a list containing donors who have been sorted by priority. Testing was carried out by dividing the data according to the conditions of the data collection environment (before the pandemic, during the pandemic and a combination of before and during the COVID-19 pandemic). The highest MRR value was obtained from the ANN model made from a combined data of 90% classification results using RBC and fake data. The accuracy value obtained from the model is 91.13% for training and 91.83% for testing. The resulting MRR value is 8.07 x 10-4 .

Keywords


Artificial Neural Network; Rule Based Classifier; Recommendation System; Blood Donors

Full Text:

PDF

References


Boonyanusith, W., & Jittamai, P. 2012. Blood Donor

Classification Using Neural Network and Decision Tree

Techniques.

Guyton, A. C., 1997. Buku Ajar Fisiologi Kedokteran. V.

EGC. Jakarta

Melyanti, R., & Syahputra, R. W. 2020. Sistem Informasi

Donor Darah Berbasis Android pada Unit Transfusi Darah

Palang Merah Indonesia (UTD PMI) Kota Pekanbaru.

Nurin, F. 2021. Tidak Cuma Manfaat, Donor Darah Juga Bisa

Membawa Efek Samping Jika Keseringan. hellosehat.

URl:https://hellosehat.com/kelainan-darah/efeksampingdonor-darah/

Oktari, A., & Silvia, N.D. 2016. Pemeriksaan Golongan Darah

Sistem ABO Metode Slide dengan Reagen Serum Golongan

Darah A, B, O. Jurnal Teknologi Laboratorium, 5(2), 49 - 54.

Pabreja, K., & Bhasin, A. 2021. A Predictive Analytics

Framework for Blood Donor Classification. International

Journal of Big Data and Analytics in Healthcare, 6(2), 1–14.

DOI:10.4018/ijbdah.20210701.oa1

Sofiansyah, T. 2013. Sistem informasi donor darah di Unit

Donor Darah Palang Merah Indonesia Kota Bandung berbasis

web. KOMPUTA: Jurnal Ilmiah Komputer dan Informatika.

Sugianto, C. A., & Zundi, T. M. 2017. Rancang Bangun

Aplikasi Donor Darah Berbasis Mobile di PMI Kabupaten

Bandung. KOPERTIP: Jurnal Ilmiah Manajemen Informatika

dan Komputer, 1(1), 11-18. DOI:10.32485/kopertip.v1i15.

UDD PMI Surabaya. n.d. profil.

URl:http://www.sby.uddpmikotasby.com/profil

Virmani, S. & Kumara, G. 2022. Rule-Based Classifier -

Machine Learning. In GeekforGeeks.

URl:https://www.geeksforgeeks.org/rule-based-classifiermachine-learning/

Wahono, H. & Riana, D. 2020. Prediksi Calon Pendonor

Darah Potensial Dengan Algoritma Naïve Bayes, K-Nearest

Neighbors dan Decision Tree C4.5.

URl:http://dx.doi.org/10.30865/jurikom.v7i1.1953

Wang, S.-C. 2003. Artificial Neural Network.

Interdisciplinary Computing in Java Programming, 81–100.

DOI:10.1007/978-1-4615-0377-4_5

Zhang, L. 2017. Artificial Neural Network model design and

topology analysis for FPGA implementation of Lorenz chaotic

generator. 2017 IEEE 30th Canadian Conference on Electrical

and Computer Engineering (CCECE).

DOI:10.1109/ccece.2017.7946635


Refbacks

  • There are currently no refbacks.


Jurnal telah terindeks oleh :