Penerapan Artificial Neural Network dan Rule Based Classifier untuk Mengklasifikasikan Pendonor Darah Potensial pada Sistem Broadcast Pendonor
Abstract
One of UTD PMI Surabaya’s task is to provide safe and quality blood when blood is needed in an emergency. The availability of blood at UTD PMI Surabaya can be erratic, because it depends on the number of donors that fluctuates and the storage time of blood is not long. Therefore, UTD PMI Surabaya needs a system to invite potential donors to meet blood needs when needed in an emergency, by minimizing blood wasted. The classification model and the creation of a recommendation system will produce a list containing donors who have been sorted by priority. Testing was carried out by dividing the data according to the conditions of the data collection environment (before the pandemic, during the pandemic and a combination of before and during the COVID-19 pandemic). The highest MRR value was obtained from the ANN model made from a combined data of 90% classification results using RBC and fake data. The accuracy value obtained from the model is 91.13% for training and 91.83% for testing. The resulting MRR value is 8.07 x 10-4 .References
[1] Boonyanusith, W., & Jittamai, P. 2012. Blood Donor
Classification Using Neural Network and Decision Tree
Techniques.
[2] Guyton, A. C., 1997. Buku Ajar Fisiologi Kedokteran. V.
EGC. Jakarta
[3] Melyanti, R., & Syahputra, R. W. 2020. Sistem Informasi
Donor Darah Berbasis Android pada Unit Transfusi Darah
Palang Merah Indonesia (UTD PMI) Kota Pekanbaru.
[4] Nurin, F. 2021. Tidak Cuma Manfaat, Donor Darah Juga Bisa
Membawa Efek Samping Jika Keseringan. hellosehat.
URl:https://hellosehat.com/kelainan-darah/efeksampingdonor-darah/
[5] Oktari, A., & Silvia, N.D. 2016. Pemeriksaan Golongan Darah
Sistem ABO Metode Slide dengan Reagen Serum Golongan
Darah A, B, O. Jurnal Teknologi Laboratorium, 5(2), 49 - 54.
[6] Pabreja, K., & Bhasin, A. 2021. A Predictive Analytics
Framework for Blood Donor Classification. International
Journal of Big Data and Analytics in Healthcare, 6(2), 1–14.
DOI:10.4018/ijbdah.20210701.oa1
[7] Sofiansyah, T. 2013. Sistem informasi donor darah di Unit
Donor Darah Palang Merah Indonesia Kota Bandung berbasis
web. KOMPUTA: Jurnal Ilmiah Komputer dan Informatika.
[8] Sugianto, C. A., & Zundi, T. M. 2017. Rancang Bangun
Aplikasi Donor Darah Berbasis Mobile di PMI Kabupaten
Bandung. KOPERTIP: Jurnal Ilmiah Manajemen Informatika
dan Komputer, 1(1), 11-18. DOI:10.32485/kopertip.v1i15.
[9] UDD PMI Surabaya. n.d. profil.
URl:http://www.sby.uddpmikotasby.com/profil
[10] Virmani, S. & Kumara, G. 2022. Rule-Based Classifier -
Machine Learning. In GeekforGeeks.
URl:https://www.geeksforgeeks.org/rule-based-classifiermachine-learning/
[11] Wahono, H. & Riana, D. 2020. Prediksi Calon Pendonor
Darah Potensial Dengan Algoritma Naïve Bayes, K-Nearest
Neighbors dan Decision Tree C4.5.
URl:http://dx.doi.org/10.30865/jurikom.v7i1.1953
[12] Wang, S.-C. 2003. Artificial Neural Network.
Interdisciplinary Computing in Java Programming, 81–100.
DOI:10.1007/978-1-4615-0377-4_5
[13] Zhang, L. 2017. Artificial Neural Network model design and
topology analysis for FPGA implementation of Lorenz chaotic
generator. 2017 IEEE 30th Canadian Conference on Electrical
and Computer Engineering (CCECE).
DOI:10.1109/ccece.2017.7946635