Deteksi Plagiarisme pada Kode Bahasa Pemrograman Java menggunakan XGBoost
Abstract
Keywords
Full Text:
PDFReferences
Anghel, A., Papandreou, N., Parnell, T., Palma A.D., &
Pozidis, H. (2019). Benchmarking and Optimization of
Gradient Boosting Decision Tree Algorithms. ArXiv,
abs/1809.04559. DOI: 10.48550/arXiv.1809.04559.
Asaadi, S., Mohammad, S., & Kiritchenko, S. (2019). Big
BiRD: A Large, Fine-Grained, Bigram Relatedness Dataset
for Examining Semantic Composition. Proceedings of the
Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language
Technologies, Volume 1. DOI: 10.18653/v1/N19-1050
Awale, N., Pandey, M., Dulal, A., & Trismina, B. (2020).
Plagiarism Detection in Programming Assignments using
Machine Learning. Journal of Artificial Intelligence and
Capsule Networks, 2(3), 177-184. DOI:
36548/jaicn.2020.3.005
Chen, T. & Guestrin, C. (2016). XGBoost: A Scalable Tree
Boosting System. KDD '16: Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining. DOI: 10.1145/2939672.2939785
Chowdhury, H. A. & Bhattacharyya, D. K. (2018). Plagiarism:
Taxonomy, Tools and Detection Techniques. Knowledge,
Library and Information Networking, NACLIN 2016, Assam,
India. ArXiv, abs/1801.06323. DOI:
48550/arXiv.1801.06323
Cosma, G. & Joy, M. (2008). Towards a Definition of SourceCode Plagiarism. IEEE Transactions on Education, 51(2),
-200. DOI: 10.1109/TE.2007.906776
Ďuračík, M., Kršák E., & Hrkút, P. (2017). Plagiarism Across
Europe and Beyond 2017. Using Concepts of Text Based
Plagiarism Detection in Source Code Plagiarism Analysis.
Mendel University. ISBN: 978-80-7509-493-3
Gomaa, W.H. & Fahmy, A.A. (2013). A Survey of Text
Similarity Approaches. International Journal of Computer
Applications, 68(13), 13-18. DOI: 10.5120/11638-7118
Gosling, J., Joy, B., Steele, G., Bracha, G., & Buckley, A.
(2014). The Java Language Specification, Java SE 8 Edition.
Addison-Wesley Professional. ISBN: 978-0-13-390069-9
Jijo, B.T. & Abdulazeez, A. M. (2021). Classification Based
on Decision Tree Algorithm for Machine Learning. Journal of
Applied Science and Technology Trends, 2(1), 20-28. DOI:
38094/jastt20165
Karnalim, O. & Sulistiani, L. (2018). Which Source Code
Plagiarism Detection Approach is More Humane? The 9th
International Conference on Awareness Science and
Technology, Fukuoka, Japan. DOI:
1109/ICAwST.2018.8517170
Munif, A., Akbar, R. J., Tantra, R.I., & Ilavi, R. (2017).
Rancang Bangun Sistem E-Learning Pemrograman pada
Modul Deteksi Plagiarisme Kode Program dan Student
Feedback System. JUTI: Jurnal Ilmiah Teknologi Informasi,
(1), 104-118. DOI: 10.12962/j24068535.v15i1.a640
Pradhan, N., Gyanchandani, M., & Wadhvani, R. (2015). A
Review on Text Similarity Technique used in IR and its
Application. International Journal of Computer Applications,
(9), 29-34. DOI: 10.5120/21257-4109
Prechelt, L., Malpohl, G., & Philippsen M. (2002). Finding
Plagiarisms among a Set of Programs with JPlag. Journal of
Universal Computer Science, 8(11), 1016-1038. ISSN: 0948-
Priya, S., Dixit, A. Das, K., & Patil, R. H. (2019). Plagiarism
Detection in Source Code Using Machine Learning.
International Journal of Engineering and Advanced
Technology, 8(4), 897-901. ISSN: 2249-8958
Sarkar, S., Das, D., Pakray, P., & Gelbukh, A. (2016).
JUNITMZ at SemEval-2016 Task 1: Identifying Semantic
Similarity Using Levenshtein Ratio. Proceedings of the 10th
International Workshop on Semantic Evaluation (SemEval2016), 702-705. DOI: 10.18653/v1/S16-1108
Shivaji, S.K. & Prabhudeva. (2015). Plagiarism Detection by
using Karp-Rabin and String Matching Algorithm Together.
International Journal of Computer Applications, 116(23), 37-
DOI: 10.5120/20294
Refbacks
- There are currently no refbacks.
Jurnal telah terindeks oleh :