Analisis Sentimen Mahasiswa di Surabaya Terhadap Pelayanan Vaksinasi COVID-19 Menggunakan Beberapa Classifier
(1) Program Studi Teknik Informatika, Universitas Kristen Petra Surabaya
(2) Program Studi Teknik Informatika, Universitas Kristen Petra Surabaya
(3) Program Studi Teknik Informatika, Universitas Kristen Petra Surabaya
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
Alzamzami, F., Hoda, M., & Saddik, A. E. 2020. Light
Gradient Boosting Machine for General Sentiment
Classification on Short Texts: A Comparative Evaluation.
Retrieved from https://ieeexplore.ieee.org/stamp/stamp.jsp?
arnumber=9099543.
Athiwaratkun, B., Wilson, A. G., & Anandkumar, A. 2018.
Probabilistic FastText Multi-Sense Word Embeddings.
Retrieved from https://arxiv.org/pdf/1806.02901.pdf.
Baid, P., Gupta, A., & Chaplot, N. 2017. Sentiment Analysis
of Movie Reviews using Machine Learning Techniques. From
https://www.researchgate.net/Sentiment_Analysis_of_Revie
ws_using_Machine_Learning_Techniques/
Charlyn, et al. 2021. Twitter Sentiment Analysis towards
COVID-19 Vaccines in the Philippines Using Naive Bayes.
https://doi.org/10.3390/info12050204.
NN. 2021. Cara Memperbaiki Data Sertifikat Vaksin yang
Salah, Jangan Panik Dulu!. Retrieved from
https://news.detik.com/berita/d-5721350/cara-memperbaikidata-sertifikat-vaksin-yang-salah-jangan-panik-dulu.
Dey, et al. 2016. Sentiment Analysis of Review Datasets using
Naïve Bayes’ and K-NN Classifier.
https://doi.org/10.5815/ijieeb.2016.04.07.
Ke, G., et al. 2017. LightGBM: A Highly Efficient Gradient
Boosting Decision Tree. Retrieved from
https://papers.nips.cc/paper/2017/file/6449f44a102-Paper.pdf
Khanvilkar & Vora. 2018. Sentiment Analysis for Product
Recommendation Using Random Forest. Retrieved from
https://www.researchgate.net/profile/Sentiment-Analysis-forProduct-Recommendation-Using-Random-Forest.pdf
Mountassir, A., Benbrahim, H. & Berrada, I. 2012. An
empirical study to address the problem of Unbalanced Data
Sets in sentiment classification. IEEE 2012 IEEE International
Conference.doi:10.1109/ICS MC.2012.6378300
Musyaddad, A. A. 2021. Ombudsman Temukan Sejumlah
Masalah Vaksinasi Covid di Surabaya. Retrieved from
https://ombudsman.go.id/pengumuman/r/artikel--ombudsman
-temukan-sejumlah-masalah-vaksinasi-covid-di-surabaya.
Priyavrat, & Singh, A. J. 2017. Sentiment Analysis: A
Comparative Study of Supervised Machine Learning
Algorithms Using Rapid miner. Int. J. Res. Appl. Sci. Eng.
Technol., vol. 5, pp. 80–89.
Pristiyono, et al. 2020. Sentiment analysis of COVID-19
vaccine in Indonesia using Naïve Bayes Algorithm. IOP
Conference Series: Materials Science and Engineering.
Retrieved from https://iopscience.iop.org/article/10.1088/
-899X/1088/1/ 012045/meta
Prusa, J., Khoshgoftaar, T. M., Dittman, D. J. & Napolitano,
A. 2015. Using Random Undersampling to Alleviate Class
Imbalance on Tweet Sentiment Data. IEEE 2015 IEEE
International Conference. doi:10.1109/IRI.2015.39
Salman, Ghinan. 2021. Punya Keluhan Soal Sertifikat Vaksin
COVID-19, Warga Surabaya Bisa Lapor ke Layanan Ini.
Retrieved from https://regional.kompas.com
/read/2021/08/27/203228078/punya-keluhan-soal-sertifikatvaksin-covid-19-warga-surabaya-bisa-lapor-ke.
Scikit-learn Developers. 2021. MultinomialNB. Retrieved
from https://scikit-learn.org/sTabel/modules/generated/
sklearn.naive_bayes.MultinomialNB.html
Somantri, O., & Apriliani, D. 2018. Support Vector Machine
Berbasis Feature Selection Untuk Sentiment Analysis
Kepuasan Pelanggan Terhadap Pelayanan Warung Dan
Restoran Kuliner Kota Tegal. https://doi.org/10.25126
/jtiik20185867
Ting, S.L, Ip, W. H., & Tsang, A. H. C. 2011. Is Naive Bayes
a Good Classifier for Document Classification?. Retrieved
from https://www.researchgate.net/Is-Naive-Bayes-a-GoodClassifier-for-Document-Classification.pdf
Young, J. C., & Rusli, A. 2019. Review and Visualization of
Facebook’s FastText Pretrained Word Vector Model.
doi:10.1109/icesi.2019.8863015
Refbacks
- There are currently no refbacks.
Jurnal telah terindeks oleh :