Pemodelan Lip Reading Bahasa Indonesia Berbasis Visem Menggunakan VGG16 serta Jaro-Winkler Similarity dan Bigram
Abstract
Keywords
Full Text:
PDFReferences
Ansari, M. et al. (2017). A comprehensive analysis of image
edge detection techniques. International Journal of
Multimedia and Ubiquitous Engineering, 12(11), 1-12. DOI:
14257/ijmue.2017.12.11.01.
Archana, J. N., & Aishwarya, P. (2016). A review on the image
sharpening algorithms using unsharp masking. International
Journal of Engi-neering Science and Computing, 6(7). DOI:
35940/ijitee.K2091.1081219.
Arifin, F. et al. (2015). Lip reading based on background
subtraction and image projection. 2015 International
Conference on Information Technology Systems and
Innovation (ICITSI), 1-3. DOI: 10.1109/ICITSI.2015.
Aulia, M. et al. (2017). Sentence-level Indonesian lip reading
with Spatiotemporal CNN and Gated RNN. DOI:
1109/ICACSIS.2017.8355061.
Cho, K. et al (2014). Learning phrase representations using
RNN encoder-decoder for statistical machine translation.
DOI: 10.3115/v1/D14-1179.
Dell'Aringa, A. H. B. et al. (2007). Lip reading role in the
hearing aid fitting process. Brazilian Journal of
Otorhinolaryngology, Volume 73, Issue 1, 95-99. ISSN 1808-
DOI: 10.1016/S1808-8694(15)31129-0.
Estellers, V. & Thiran, J. (2012). Multi-pose lipreading and
audio-visual speech recognition. EURASIP Journal on
Advances in Signal Processing, 2012(1), 1-23. DOI:
1186/1687-6180- 2012-51.
Garg, A. et al. (2016). Lip reading using CNN and LSTM.
Retrieved from http://cs231n.stanford.edu/reports/2016/pdfs/
_Report.pdf.
Grossi, E. & Buscema, M. (2008). Introduction to artificial
neural networks. European Journal of Gastroenterology &
Hepatology, 19(12), 1046-54. DOI: 10.1097/MEG.
b013e3282f198a0.
Harpini, A. (2019). Disabilitas rungu di Indonesia, p. 3. ISSN:
-7659.
Ji, S. et al. (2010). 3D Convolutional Neural Networks for
human action recognition. Pattern Analysis and Machine
Intelligence, 35(1), 495-502. DOI: 10.1109/TPAMI.2012.59.
Kanan, C & Cottrell, G. W. (2012). Color-to-grayscale: does
the method matter in image recognition?. PloS one, 7(1),
e29740. DOI: 10.1371/journal.pone.0029740.
Klakow, D., & Peters, J. (2002). Testing the correlation of
word error rate and perplexity. Speech Communication, 38(1-
, 19-28. DOI: 10.1016/S0167-6393(01)00041-3.
Kurniawan, A. & Suyanto, S. (2020). Syllable-based
Indonesian lip reading model. DOI: 10.1109/
ICoICT49345.2020.9166217.
Leonardo, B., & Hansun, S. (2017). Text documents
plagiarism detection using Rabin-Karp and Jaro-Winkler
distance algorithms. Indonesian Journal of Electrical
Engineering and Computer Science, 5(2), 462-471. DOI:
11591/ijeecs.v5.i2.pp462-471.
Lipton, Z. C. et al. (2015). A critical review of recurrent
neural networks for sequence learning. arXiv preprint
arXiv:1506.00019. DOI: 10.48550/arXiv.1506.00019.
Lu, Y. & Li, H. (2019). Automatic lip-reading system based
on deep Convolutional Neural Network and attention-based
Long Short-Term Memory. Applied Sciences, 9(8), 1599.
DOI: 10.3390/app9081599.
Lynn, H. et al. (2019). A deep Bidirectional GRU Network
model for biometric electrocardiogram classification based
on Recurrent Neural Networks. IEEE Access, 7, 145395-
DOI: 10.1109/ACCESS.2019.2939947.
Martin, S. et al. (1998). Algorithms for bigram and trigram
word clustering. Speech communication, 24(1), 19-37. DOI:
1016/S0167-6393(97)00062-9.
Murthy, N. & Rudregowda, S. (2020). Lip-reading
techniques: A review. International journal of scientific &
technology research, 9(02), 4378-4383. ISSN: 2277-8616.
Nasuha, A. et al. (2017). Automatic lip reading for daily
Indonesian words based on frame difference and horizontalvertical image projection, 95(2), 393-402. ISSN: 1992-8645.
O'Shea, K., & Nash, R. (2015). An introduction to
convolutional neural networks. arXiv preprint
arXiv:1511.08458. DOI: 10.48550/arXiv.1511.08458.
Özcan, T. & Basturk, A. (2019). Lip reading using
Convolutional Neural Networks with and without pre-trained
models. Balkan Journal of Electrical and Computer
Engineering, 7(2), 195-201. DOI: 10.17694/bajece.479891.
Paskin, M. (2004). Grammatical bigrams. Advances in Neural
Information Processing Systems, 14. DOI: 10.1.1.24.8418
Setyati, E. et al. (2015). Phoneme-Viseme mapping for
Indonesian language based on blend shape animation.
IAENG International Journal of Computer Science, 42(3), 1-
DOI: 10.22146/ijitee.47577.
Sherstinsky, A. (2020). Fundamentals of Recurrent Neural
Network (RNN) and Long Short-Term Memory (LSTM)
network. Physica D: Nonlinear Phenomena, 404, 132306.
DOI: 10.1016/j.physd.2019.132306.
Stehman, S. V. (1997). Selecting and interpreting measures of
thematic classification accuracy. Remote sensing of
Environment, 62(1), 77-89. DOI: 10.1016/S0034-
(97)00083-7.
Yuheng, S., & Hao, Y. (2017). Image segmentation
algorithms overview. arXiv preprint arXiv:1707.02051. DOI:
48550/arXiv.1707.02051.
Zhu, C., & Gao, D. (2016). Influence of data preprocessing.
Journal of Computing Science and Engineering, 10(2), 51-57.
DOI: 10.5626/JCSE.2016.10.2.51.
Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. arXiv: 1409.1556. DOI:
48550/arXiv.1409.1556.
Refbacks
- There are currently no refbacks.
Jurnal telah terindeks oleh :