Hybrid Recommendation System untuk Peminjaman Buku Perpustakaan dengan Collaborative dan Content-Based Filtering

Adrianus Aditya Widjaja(1*), Henry Novianus Palit(2),


(1) Program Studi Teknik Informatika, Universitas Kristen Petra Surabaya
(2) Program Studi Teknik Informatika, Universitas Kristen Petra Surabaya
(*) Corresponding Author

Abstract


The development of technology is growing rapidly and followed with the growth of digital data in the internet. Therefore, recommendation system was invented and can be used in many aspects of human life. For example, a book recommendation system can be used to help user to choose a book to be read which is suitable with their preferences. Using a recommendation system can help to reduce the required time to choose a book because of the massive choices of books. This research using hybrid recommendation system which combined collaborative filtering and content-based filtering method. The purpose of this study was to achieve a better recommendation outcome. To measure how well the result of the recommendation, mean reciprocal rank and mean average precision was used. The results showed that weighted hybrid yields a better score than the other two methods. The score was 0.2113 and 0.0988 respectively

Keywords


book; recommendation system; collaborative filtering; content-based filtering; hybrid recommendation system; mean reciprocal rank; mean average precision

Full Text:

PDF

References


Adistia, L. D., Akhriza, T. M., & Jatmiko, S. 2019. Sistem Rekomendasi Buku untuk Perpustakaan Perguruan Tinggi Berbasis Association Rule. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 3(2), 304–312. https://doi.org/ 10.29207/resti.v3i2.971

Alharthi, H., Inkpen, D., & Szpakowicz, S. 2018. A surveyof book recommender systems. Journal of IntelligentInformation Systems, 51(1), 139–160. https://doi.org/10.1007/s10844-017-0489-9

Basiri, J., Shakery, A., Moshiri, B., & Zi Hayat, M. 2010.Alleviating the cold-start problem of recommender systemsusing a new hybrid approach. 2010 5th InternationalSymposium on Telecommunications, IST 2010, 962–967.https://doi.org/10.1109/ISTEL.2010.5734161

Çano, E., & Morisio, M. 2017. Hybrid recommendersystems: A systematic literature review. Intelligent DataAnalysis, 21(6), 1487–1524. https://doi.org/10.3233/IDA163209

Choi, S. H., Jeong, Y. S., & Jeong, M. K. 2010. A hybridrecommendation method with reduced data for large-scaleapplication. IEEE Transactions on Systems, Man andCybernetics Part C: Applications and Reviews, 40(5), 557–566. https://doi.org/10.1109/TSMCC.2010.2046036

Das, D., Sahoo, L., & Datta, S. 2017. A Survey onRecommendation System. International Journal ofComputer Applications, 160(7), 6–10. https://doi.org/10.5120/ijca2017913081Gambar 3. Grafik Mean Reciprocal Rank dan MeanAverage Precision pada Data Perpustakaan

De Campos, L. M., Fernández-Luna, J. M., Huete, J. F., &Rueda-Morales, M. A. 2010. Combining content-based andcollaborative recommendations: A hybrid approach based onBayesian networks. International Journal of ApproximateReasoning, 51(7), 785–799. https://doi.org/10.1016/j.ijar.2010.04.001

Desrosiers, C., & Karypis, G. 2011. Recommender SystemsHandbook. In Recommender Systems Handbook.https://doi.org/10.1007/978-0-387-85820-3

Felfernig, A., Jeran, M., Ninaus, G., Reinfrank, F., Reiterer,S., & Stettinger, M. 2014. Basic approaches inrecommendation systems. Recommendation Systems inSoftware Engineering, 15–37. https://doi.org/10.1007/978-3-642-45135-5_2

Koleksi dan Gedung. 2014. https://library.petra.ac.id/index.php?r=site/koleksi_gedung

Manjula, R., & Chilambuchelvan, A. 2016. Content BasedFiltering Techniques in Recommendation System using userpreferences. International Journal of Innovations inEngineering and Technology, 7(4), 151.

Mathew, P., Kuriakose, B., & Hegde, V. 2016. BookRecommendation System through content based andcollaborative filtering method. Proceedings of 2016International Conference on Data Mining and AdvancedComputing, SAPIENCE 2016, 47–52. https://doi.org/10.1109/SAPIENCE.2016.7684166

Mooney, R. J., & Roy, L. 2000. Content-based bookrecommending using learning for text categorization.Proceedings of the ACM International Conference onDigital Libraries, 195–204. https://doi.org/10.1145/336597.336662

Nilashi, M., Bagherifard, K., Ibrahim, O., Alizadeh, H.,Nojeem, L. A., & Roozegar, N. 2013. Collaborative filteringrecommender systems. Research Journal of AppliedSciences, Engineering and Technology, 5(16), 4168–4182.https://doi.org/10.19026/rjaset.5.4644

Taherdoost, H. 2018. Sampling Methods in ResearchMethodology; How to Choose a Sampling Technique forResearch. SSRN Electronic Journal, 5(2), 18–27.https://doi.org/10.2139/ssrn.3205035


Refbacks

  • There are currently no refbacks.


Jurnal telah terindeks oleh :