Aplikasi Segmentasi Pelanggan menggunakan Algoritma RFM/P dan Kmeans Clustering pada PT. XYZ

Authors

  • Priscilla Delaya Program Studi Informatika
  • Andreas Handojo Program Studi Informatika
  • Alexander Setiawan Program Studi Informatika

Abstract

Customers are one of the keys to the resilience of a business. Each customer has different behavior and needs, so they need different treatment. Intense competition in the retail business makes customers have many choices and can easily switch to other companies. As a solution for PT. XYZ to compete, a customer segmentation system is needed to help PT. XYZ understand and maintain their customer’s loyalty. Therefore, in this study, the RFM/P method was used to calculate customer value, which was then followed by Kmeans clustering to divide customers into three clusters, namely below zeroes, most growable customers, and most valuable customers for each product. The results of the questionnaire evaluation in system testing were carried out on 6 respondents, for application functionality 93% good, application design 90% good, ease of use of application 83% good, application responding to needs 90% good, and overall application 87% good.

References

[1] Angelie, A. V. 2017. Segmentasi Pelanggan Menggunakan Clustering K-Means Dan Model RFM (Studi Kasus : Pt . Bina Adidaya Surabaya).

[2] Buttle, F., & Maklan, S. 2015. Customer Relationship Management (3rd ed.). Routledge. https://doi.org/10.4324/9781315764597Lang. Syst. 15, 5.

[3] Deny, S. 2019. Aprindo: Penutupan Gerai Hal yang Biasa di Industri Ritel - Bisnis Liputan6.com. Liputan6. https://www.liputan6.com/bisnis/read/3997125/aprindopenutupan-gerai-hal-yang-biasa-di-industri-ritel

[4] Hadi, F., Mustakim, M., Rahmadia, D. O., Nugraha, F. H., Bulan, N. P., & Monalisa, S. 2017. Penerapan K-Means Clustering Berdasarkan RFM Mofek Sebagai Pemetaan dan Pendukung Strategi Pengelolaan Pelanggan (Studi Kasus: PT. Herbal Penawar Alwahidah Indonesia Pekanbaru). Jurnal Sains Dan Teknologi Industri, 15(1), 69–76.

[5] He, X., & Li, C. 2017. The Research and Application of Customer Segmentation on E-Commerce Websites. Proceedings - 2016 International Conference on Digital Home, ICDH 2016, 203–208. https://doi.org/10.1109/ICDH.2016.050.

[6] Heldt, R., Silveira, C. S., & Luce, F. B. 2019. Predicting customer value per product: From RFM to RFM/P. Journal of Business Research. https://doi.org/10.1016/j.jbusres.2019.05.001.

[7] Kandeil, D. A., Saad, A. A., & Youssef, S. M. 2014. A twophase clustering analysis for B2B customer segmentation. Proceedings - 2014 International Conference on Intelligent Networking and Collaborative Systems, IEEE INCoS 2014, 221–228. https://doi.org/10.1109/INCoS.2014.49.

[8] Magretta, J. 2014. Understanding Michael Porter, Panduan Paling Penting Tentang Kompetensi dan Strategi (Setialie, D. K.,Trans.). Andi Offsite. (2011).

[9] Palupi, G. S. 2015. Segmentasi Retailer Dengan Model RFM-Location Dan ANT-KMEANS Sebagai Upaya Pengembangan Strategi Retensi Retailer Pada Perusahaan Distribusi Farmasi (Studi Kasus: PT. XYZ). 139. http://repository.its.ac.id/63356/

[10] Payne, A. 2012. Handbook of CRM: achieving excellence in customer management. In Clinical Kidney Journal (Vol. 4, Issue 3).

[11] Sulistiani, D. 2014. Mencapai keunggulan bersaing dengan strategi diferensiasi. El Muhasaba Jurnal Akuntansi, 4(2), 117.

[12] Sutresno, S. A., Iriani, A., & Sediyono, E. 2018. Metode KMeans Clustering dengan Atribut RFM untuk Mempertahankan Pelanggan. Jurnal Teknik Informatika Dan Sistem Informasi, 4, 433–440.

[13] Tan, Pang-Ning, et al. 2006. Introduction to data mining. Boston: Pearson Addison Wesley.

[14] Tsiptsis, K., & Chorianopoulos, A. 2010. Data Mining Techniques in CRM: Inside Customer Segmentation. In Data Mining Techniques in CRM: Inside Customer Segmentation. https://doi.org/10.1002/9780470685815.

[15] Wei, J., Lin, S., & Wu, H. 2010. A review of the application of RFM model. African Journal of Business Management, 4(19), 4199–4206.

Downloads

Published

2021-10-13

Issue

Section

Articles