Penerapan Metode Slope One dan K-Nearest Neighbor Untuk Menentukan Rekomendasi Tempat Makan di Bali Berbasis Android

Lucy Rosalind(1*), Leo Willyanto Santoso(2), Lily Puspa Dewi(3),


(1) Program Studi Informatika
(2) Program Studi Informatika
(3) Program Studi Informatika
(*) Corresponding Author

Abstract


Restaurants are an alternative if there is no food at home or when
you are traveling somewhere. Bali is one of the popular tourism
cities because of the many tourists. The number of restaurants
makes users confused to choose a restaurant that suits their
needs. This recommendation application is made to help users in
choosing the restaurant that suits their needs easily.
The initial step taken is the scraping process, after the scraping
process the next step is looking for restaurants that do not put
prices which will later be calculated with the price prediction with
the Slope One algorithm after the data entered into the database.
The recommendation calculation is done on the backend. When on
Android, it only needs to make API calls.
Based on the results of the tests that have been carried out, the
program has succeeded in collecting data, managing, and
displaying restaurant data. The price prediction process with the
Slope One algorithm has very good results. For the process of
scraping the data to be retrieved as the original data. The KNearest Neighbor calculation process was successfully carried
out and has sufficient accuracy with K of 35, has an accuracy of
59%, and contains data of 7,890 restaurants.

Keywords


recommendations; prediction price; Slope One; K-Nearest Neighbor; Web Scraping

Full Text:

PDF

References


Adexe Alifian, 2021, June 11. Belajar dasar web scraping

bersama python. URI=https://www.anbidev.com/pythonweb-scraping/

Anggika, L. K. 2018. Pelayanan restoran dalam menciptakan

kepuasan pelanggan: studi pengendalian mutu di restoran

D’Ayam Crispy Yogyakarta.

DOI=https://doi.org/10.31227/osf.io/tg4ma

Ardhiansyah, E., Basuki, S., & Wicaksono, G. W. 2020.

Aplikasi rekomendasi rumah makan menggunakan algoritma k-nearest neighbour berbasis android (Studi kasus:

Kecamatan Banyuwangi). Jurnal Repositor, 2(2), 145-154.

DOI=https://doi.org/10.22219/repositor.v2i2.247.g37

Artha, I. N. W., & Wikansari, R. 2014. Perilaku konsumen

dalam memilih tempat makan dengan pendekatan stimulus

pemasaran.

Dharma. Pratama & Seng. Hansun. 2017. Aplikasi

rekomendasi tempat makan menggunakan algoritma slope

one pada platform android, IJCCS, pp. 11-20, 2017.

Dsn Cahya. 2021, March 22. Algoritma k-nearest neighbors

(K-NN).

URI=https://cahyadsn.phpindonesia.id/extra/knn.php

Firmahsyah, F., & Gantini, T. 2016. Penerapan metode

content-based filtering pada sistem rekomendasi kegiatan

ekstrakulikuler (Studi Kasus di Sekolah ABC). JuTISI

(Jurnal Teknik Informatika dan Sistem Informasi), 2(3).

DOI=https://doi.org/10.28932/jutisi.v2i3.645

Handoko, R. I. 2019. Rancang bangun aplikasi masacake

untuk rekomendasi dan order online bahan kue di toko bagus

memanfaatkan youtube api (Doctoral dissertation,

Universitas Komputer Indonesia).

Idhom Addi. 2021, February 20. Daftar 10 kota wisata

Indonesia terpopuler 2019 versi tripadvisor.

URI=https://tirto.id/daftar-10-kota-wisata-indonesiaterpopuler-2019-versi-tripadvisor-epEc

Laksana, E. A. 2014. Collaborative filtering dan

aplikasinya. Jurnal Ilmiah Teknologi Infomasi Terapan, 1(1).

DOI=https://doi.org/10.33197/jitter.vol1.iss1.2014.44

Mitra, V., Sujaini, H., & Negara, A. B. P. 2017. Rancang

bangun aplikasi web scraping untuk

korpus paralel indonesia-inggris dengan metode html

dom. JUSTIN (Jurnal Sistem dan Teknologi Informasi), 5(1),

-41.

Ratnasari, A. D. 2016. Pengaruh kualitas produk, harga,

lokasi, dan kualitas layanan. Jurnal Pendidikan Tata

Niaga.4(3).

Tandra, D. J., Noertjahyana, A., & Purbowo, A. N. 2020.

Implementasi Web Scraping untuk Pengumpulan Informasi

Promo Makanan Menggunakan Klasifikasi Naïve

Bayes. Jurnal Infra, 8(1), 289-294.


Refbacks

  • There are currently no refbacks.


Jurnal telah terindeks oleh :