Pemetaan Penyebaran Tingkat Kepatuhan Masyarakat dalam Menggunakan Masker di Pasar Tradisional Kota Surabaya dengan Metode Hot Spot Analysis (Getis-Ord Gi*)

Authors

  • Stefanus Benhard Program Studi Informatika
  • Silvia Rostianingsih Program Studi Informatika
  • Resmana Lim Program Studi Teknik Elektro

Abstract

According to a study conducted to see the level of effectiveness for using masks in case study by [1]), explains that if the use of masks has a positive impact on resulting transmission. Research conducted invloving cloth masks, surgical masks and Filtering Face Piece 2 (FFFP2) masks, with output results that the three types of masks show stable resuts to protect all the time and doesn’t depend on persons activities. At this moment, CoronaVirus Disease 2019 (COVID-19) is one of the disease that causes global pandemic and creates several new clusters, especially traditional market clusters. Traditional market is one of the driving wheels that can pursue society economy. In that case, there needs to be serious attention in taking self care by using protective equipment at least a mask. This mapping of the distribution level people for using masks combines many aspect such as map visualization, website information system and image processing for masks detection. The use of image processing plays an important role in the mapping system, that’s because the processing of manually counting people who are not using masks will take a lot of labor in its implementation. Image processing used is face mask detector and people counter with 82% average accuracy at the implementation process. The hot spot analysis mapping method cannot be used in static data types such as traditional market, because it will gave the same result in the same density of market location from day to day. The most exact method for the data type that compares the values of not using mask to the entire traditional market is Inverse Distance Weighted (IDW) Interpolated Method. Testing results using the new method show that there is a change for highest or lowest not using masks by people at the traditional market. This method only calculates the value and not calculate distance between each market.

References

[1] van der Sande M, Teunis P, Sabel R (2008) Professional and

Home-Made Face Masks Reduce Exposure to Respiratory

Infections among the General Population. PLoS ONE 3(7):

e2618. https://doi.org/10.1371/journal.pone.0002618

[2] BBC News Indonesia. (2020, Juni 18). Covid-19 Indonesia

dan klaster pasar tradisional: Antara keselamatan dan

tuntutan perut, ‘kalau nggak jualan, mau makan apa’ kata

pedagang. Diambil kembali dari BBC News Indonesia:

https://www.bbc.com/indonesia/indonesia-53094297

[3] Kompas.com. (2020, September 24). Perkantoran Masih Jadi

Salah Satu Klaster Tertinggi Penyebaran Covid-19 di Jakarta.

Diambil kembali dari Kompas.com:

https://megapolitan.kompas.com/read/2020/09/24/11141021/

perkantoran-masih-jadi-salah-satu-klaster-tertinggipenyebaran-covid-19

[4] detikNews. (2020, Oktober 6). Klaster Keluarga

Bermunculan, Ibu Jadi Kunci Pencegah COVID-19 . Diambil

kembali dari detikNews.com: https://news.detik.com/berita/d5200977/klaster-keluarga-bermunculan-ibu-jadi-kuncipencegah-covid-19

[5] Kementerian Kesehatan republik Indonesia. (2020, Agustus

30). Kampanye Nasional Disiplin Pakai Masker. Diambil

kembali dari Kementerian Kesehatan republik Indonesia:

https://www.kemkes.go.id/article/print/20083000003/kampa

nye-nasional-disiplin-pakai-masker.html

[6] Republika.co.id. (2020, Agustus 11). Presiden: 70%

Masyarakat Belum Pakai Masker! Retrieved from

ayotasik.com:

https://www.ayotasik.com/read/2020/08/11/6059/presiden70-masyarakat-belum-pakai-masker

[7] Kriegel, H.-P., Kröger, P., Sander, J. and Zimek, A. (2011),

Density-based clustering. WIREs Data Mining Knowl Discov,

1: 231-240. https://doi.org/10.1002/widm.30

[8] MacQueen, J. (1967). Some methods for classification and

analysis of multivariate observations. Proc. 5th Berkeley

Symp. Math. Statistics and Probability., 281-297.

[9] Nielsen, F. (2016). Introduction to HPC with MPI for Data

Science. Hierarchical Clustering, 222-239.[10] Getis, A., & Ord, J. (1992). The Analysis of Spatial

Association by Use of Distance Statistics. Geographical

Analysis,Vol.24,No.3 (July 1992).

[11] Public Health Columbia. (2020, Oktober 12). Hot Spot Spatial

Analysis. Diambil kembali dari publichealthcolumbia:

https://www.publichealth.columbia.edu/research/populationhealth-methods/hot-spot-spatial-analysis

[12] Ursullia, D. S. (2018). Analisis Spasial Persebaran Penderita

HIV serta Lokasi dan Lokalisasi Prostitusi di Kota Sorong

Tahun 2016. Surakarta: Fakultas Geografi Universitas

Muhammadiyah Surakarta. URI :

http://eprints.ums.ac.id/id/eprint/65620

[13] Pemerintah Kota Surabaya. (2020, Oktober 28). Peta Sebaran

Pasien. Diambil kembali dari Surabaya Lawan COVID-19:

https://lawancovid-19.surabaya.go.id/visualisasi/sebaran

[14] Kurniawan, D. R., Susetyo, B., & Hermawan, E. (2019).

Analisis Spasial K-Means Clustering Sebaran Keluhan

Pelanggan PDAM Tirta Pakuan Berbasis Webgis. SEMNATI

2019, 119-131.

[15] Kurniawan, A., & Sadali, M. I. (2016). Pemanfaatan Analisis

Spasial Hot Spot (Getis Ord Gi*) untuk Pemetaan Klaster

Industri di Pulau Jawa dengan Memanfaatkan Sistem

Informasi Geografi. Hibah Penelitian Dosen Sekolah Vokasi

Universitas Gadjah Mada.

[16] Visa, Sofia & Ramsay, Brian & Ralescu, Anca & Knaap,

Esther. (2011). Confusion Matrix-based Feature Selection..

CEUR Workshop Proceedings. 710. 120-127.

[17] Jurafsky, D. and Martin, J. 2019. Naive bayes and sentiment

classification. Speech and Language Processing. 1–21.

[18] Pasaribu, J. M., & Haryani, N. S. (2012). Perbandingan Teknik

Interpolasi DEM SRTM dengan Metode Inverse Distance

Weighted(IDW), Natural Neighbor dan SPLINE. Jurnal

Penginderaan Jauh Vol. 9 No. 2 , 126-132. Diambil kembali

http://jurnal.lapan.go.id/index.php/jurnal_inderaja/article/vie

wFile/1787/1621.

[19] Gonzales, A. R., Schofield, R. B., & Schofield, R. B. (2005).

Mapping Crime: Understanding Hot Spots . Washington, DC:

U.S. Department of Justice Office of Justice Programs

Downloads

Published

2021-10-13

Issue

Section

Articles