Penerapan Metode Klasifikasi C4.5 dalam Pembuatan Website Identifikasi untuk Prediksi Kredibilitas Akun pada Media Sosial Instagram

Authors

  • Yonas Christianto Program Studi Informatika
  • Rolly Intan Program Studi Informatika
  • Rudy Adipranata Program Studi Informatika

Keywords:

Etika Evolusionisme, EtikaUtilitarianisme, Etika Pragmatisme, Etika Relativisme dan Etika Deontologi.

Abstract

Instagram is one of the biggest social media platforms nowadays. As one of the biggest platforms, there’s also a lot of people who makes this platform become unhealthy social media environment, by making fake or spam accounts. This is the problem that the author is trying to solve. By developing a website that people can use to gain information about the credibility of an Instagram account, so users can interact with the target accounts safely and comfortably. The method used to predict the credibility is C4.5 classification which produce decision rules. This decision rules will be used to predict the credibility of an Instagram account. Based on the test that have been carried out, the website can be used to determine the credibility of an Instagram account and the result of the classification method reached to 97,07%.

References

[1] Ahmed, S. 2016. Evaluating Presto as an SQL on Hadoop solution : A Case at Truecaller. URI= http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-47369

[2] Anggitasari, P. 2016. Klasifikasi Spammer Pada Twitter Berdasarkan Perilaku Pengguna Menggunakan Algoritme C5.0. (Jan. 2016), 6-14. URI= http://repository.ipb.ac.id/handle/123456789/79820

[3] Arifman, P. 2020. Klasifikasi Bot Pada Media Sosial Twitter Menggunakan Algoritma C4.5. URI= http://repository.uin-suska.ac.id/id/eprint/30651

[4] Bakhshandeh, B. 2020. Instagram Fake Spammer Genuine Accounts. URI= https://www.kaggle.com/free4ever1/instagram-fake-spammer-genuine-accounts

[5] Bronshtein, A. 2017. A Quick Introduction to the “Pandas” Python Library. URI= https://towardsdatascience.com/a-quick-introduction-to-the-pandas-python-library-f1b678f34673

[6] Erin. 2020. (Jan. 2020), Instagram Followers: How Many Does the Average Person Have? Retrieved from Hastags For Likes. URI= https://www.hashtagsforlikes.co/blog/instagram-followers-how-many-does-the-average-person-have/

[7] Huaying - Instagram Crawler. (n.d.). URI= https://github.com/huaying/instagram-crawler

[8] Irena, B. and Erwin Budi Setiawan 2020. Fake News (Hoax) Identification on Social Media Twitter using Decision Tree C4.5 Method. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi). 4, 4 (Aug. 2020), 711 - 716. DOI= https://doi.org/10.29207/resti.v4i4.2125

[9] Kamagi, D. and Hansun, S. 2014. Implementasi Data Mining dengan Algoritma C4.5 untuk Memprediksi Tingkat Kelulusan Mahasiswa. Ultimatics : Jurnal Teknik Informatika. 6, 1 (Jun. 2014), 15-20. DOI= https://doi.org/https://doi.org/10.31937/ti.v6i1.327.

[10] Kurniawan, Y. I. 2018. Perbandingan Algoritma Naive Bayes dan C.45 Dalam Klasifikasi Data Mining. Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), 5, 4 (May. 2018), 457-458. DOI= http://dx.doi.org/10.25126/jtiik.201854803

[11] Lestari, D. P. 2015. Analisis Strategi Internet Marketing Butik Online di Surabaya Melalui Instagram. Commonline, 4, 2 (Jan. 2015), 412-424.

[12] Rahayu, W. and Wahyudi, E. 2017. Classical Test Theory of Innapropriate Index Score's Accuracy Comparison Using Confusion Matrix Accuracy Proportion in Educational Measurement. Indonesian Journal of Educational Review, 4, 1 (Jul. 2017), 84-92. DOI= https://doi.org/10.21009/IJER.04.01.08

[13] Serengil, S. I. 2018. Chefboost. URI= https://github.com/serengil/chefboost

[14] Suhartono, D. 2018. Weka: Software untuk Memahami Konsep Data Mining. Retrieved from Binus University School of Computer Science. (Nov. 2018), URI= https://socs.binus.ac.id/2018/11/29/weka-software-untuk-memahami-konsep-data-mining/

Downloads

Published

2021-10-13

Issue

Section

Articles