Sistem Pakar Diagnosa Penyakit Saraf Menggunakan Metode Forward Chaining dan Certainty Factor

Authors

  • Lucky Alexandre Lembangan Program Studi Informatika
  • Kartika Gunadi Program Studi Informatika
  • Alexander Setiawan Program Studi Informatika

Keywords:

Kualitas pelayanan, kepuasan pelanggan, loyalitas pelanggan

Abstract

Neurological diseases are one of the public health problems that requires special policies in an effort to handle it so that complete data are needed regarding cause, developments and outcomes. Neurological diseases consist of various types of nerves. Most people today tend to ignore or less in response to disorders that occur in the nervous system. After all, the neurological system plays a very important role in all human activities, because if the slightest symptom or disturbance is ignored, it can have serious consequence. As technology becomes more sophisticated, therefore in the future this research is expected to help replace the role of a doctor to diagnose early symptoms in the neurological system which will be implemented in a system called an expert system.

This neurological disease diagnosis expert system is equipped with Forward channeling and Certainty factor methods. The usefulness of forward chaining in this program is to collect facts that occur to the user so that later they produce conclusions, so that users do not need to answer all the questions. By selecting the existing symptoms, you will get a conclusion that is a neurological disease that is owned by the user. The usefulness of the Certainty factor in this program is to display the level of system confidence in the diagnostic results in the form of a percentage. So that later serves to convince users when using this program.

Based on the test results, this program can provide solutions that are suitable for diseases related to the symptoms felt by the user. The results of the calculation of the Certainty factor obtained quite significant results when compared with the results of interviews with experts.

References

[1] Durkin , J. 1994. Expert System: Design and development.

Macmillan Coll Div.

[2] Hartati, S., & Iswanti, S. 2013. Sistem Pakar dan

Pengembangannya (2nd ed.). Yogyakarta: Graha Ilmu.

[3] Kusumadewi, S. 2003. Artificial intelligence (teknik dan

aplikasinya). Graha Ilmu.

[4] Russel, S.J. & Norvig, P. 2003. Artificial Intelligence: A

Modern Approach. United States of America. Prentice Hall

International Inc.

[5] Budiharto, W. dan Suhartono, D. 2015. Artificial Intelligence:

Konsep dan Penerapannya. Yogyakarta : Andi.

[6] Turban, E. A. 2001. Decision support systems and intelligent

systems, 6th. New Jersey: Prentice Hall International Edition.

[7] Supartha, I. G., & Sari, I. N. 2014. Sistem Pakar Diagnosa

Awal Penyakit Kulit Pada Sapi Bali dengan Menggunakan

Metode Forward Chaining dan Certainty Factor. Jurnal

Nasional Pendidikan Teknik Informatika.

[8] Mardika, H., Hamzah, A., dan Suraya., 2015, Pemanfaatan

Aplikasi Sistem Pakar Untuk Mendiagnosa Penyakit Gigi dan

Mulut di Klinik Drg.Suyatmi, Jurnal SCRIPT, Vol. 3, No. 1.

[9] Situmeang, N., & Sulindawaty. 2019. Sistem pakar

Mendiagnosa Penyakit Saraf Pusat Manusia Dengan Metode

Certainty Factor. Program studi Teknik Informatika, STMIK

Pelita Nusantara.

[10] Imran. 2017. Karakteristik dan Outcome pasien-pasien

penyakit Neurologis. Unsyiah.

[11] Hamdina. 2013. Aplikasi Sistem Pakar Untuk mendiagnosis

Penyakit Gangguan Sistem Saraf Pada Anak Berbasis Web

Menggunakan Metode Forward Chaining. Program studi

Teknik Informatika. STMIK ATMA LUHUR Pangkalpinang.

[12] Daniel, & Virginia, G. 2010. Implementasi Sistem Pakar

Untuk Mendiagnosis Penyakit Dengan Gejala Demam

Menggunakan Metode Certainty Factor. Yogyakarta: Teknik

Informatika Universitas Kristen Duta Wacana

Downloads

Published

2021-10-13

Issue

Section

Articles