Rendering Karakter 3D Virtual secara Real-Time menggunakan Metode Light Estimation pada Augmented Reality Berbasis Lokasi

Authors

  • Kevin Kevin Program Studi Informatika
  • Liliana Liliana Program Studi Informatika
  • Kartika Gunadi Program Studi Informatika

Keywords:

Stasiun Interchange, Gubeng, Gate&Hub

Abstract

Augmented reality applications are already widely available on mobile devices, but most augmented reality applications assume that light source always comes from above the object and its direction is always downwards so that the shadow is always right under the object, therefore a method is needed to estimate light so that the direction of shadow produced is more realistic, but can still be run on mobile devices.

To answer the problem, light estimation method is used in real-time rendering of AR applications on mobile devices so that the shadow direction from virtual objects rendering is parallel and in the same direction as the shadow direction of real objects in their environment, but still uses resources that can be used on mobile devices.

Results in this study indicate that the direction of shadow produced by light estimation method in indoor environment is quite accurate (about 33°) and light enough to be used on mobile devices, because the difference in FPS and RAM usage is almost the same as the usage of application without the use of light estimation method, although there is an increase in CPU and battery usage, it's small enough to still work on a mobile device.

References

[1] Akenine-Möller, T., Haines, E., & Hoffman, N. 2018. Real-Time Rendering. A K Peters.

[2] Aromaa, S., Väätänen, A., Aaltonen, I., Goriachev, V., Helin, K., & Karjalainen, J. 2020. Awareness of the real-world environment when using augmented reality head-mounted display. Applied Ergonomics, 88, 103145. doi:10.1016/j.apergo.2020.103145

[3] Díaz-García, J., Brunet, P., Navazo, I., & Vázquez, P.-P. 2018. Progressive ray casting for volumetric models on mobile devices. Computers & Graphics, 73, 1-16. doi:10.1016/j.cag.2018.02.007

[4] Frahm, J.-m., Koeser, K., Grest, D., & Koch, R. 2005. Markerless augmented reality with light source estimation for direct illumination. In Conference on Visual Media Production CVMP, 211-220.

[5] Gomez-Jauregui, V., Manchado, C., Del-Castillo-Igareda, J., & Otero, C. 2019. Quantitative evaluation of overlaying discrepancies in mobile augmented reality applications for AEC/FM. Advances in Engineering Software, 127, 124-140. doi:10.1016/j.advengsoft.2018.11.002

[6] Jinyu, L., Bangbang, Y., Danpeng, C., Nan, W., Guofeng, Z., & Hujun, B. 2019. Survey and evaluation of monocular visual-inertial SLAM algorithms for augmented reality. Virtual Reality & Intelligent Hardware, 1(4), 386-410. doi:10.1016/j.vrih.2019.07.002

[7] Kán, P., & Kafumann, H. 2019. DeepLight: light source estimation for augmented reality using deep learning. The Visual Computer, 35(6-8), 873–883. doi:10.1007/s00371-019-01666-x

[8] Kowalczuk, P., Siepmann, C., & Adler, J. 2021. Cognitive, affective, and behavioral consumer responses to augmented reality in e-commerce: A comparative study. Journal of Business Research, 124, 357-373. doi:10.1016/j.jbusres.2020.10.050

[9] Liono, R. A., Amanda, N., Pratiwi, A., & Gunawan, A. A. 2021. A Systematic Literature Review: Learning with Visual by The Help of Augmented Reality Helps Students Learn Better. Procedia Computer Science, 179, 144-152. doi:10.1016/j.procs.2020.12.019

[10] Marques, B. A., Clua, E. W., & Vasconcelos, C. N. 2018. Deep spherical harmonics light probe estimator for mixed reality games. Computers & Graphics, 76, 96-106. doi:10.1016/j.cag.2018.09.003

[11] Meenakshi, S. V., Vasudevan, S. K., Ritesh, A., & Santhosh, C. 2015. An Innovative App with for Location Finding with Augmented Reality Using CLOUD. Procedia Computer Science, 50, 585-589. doi:10.1016/j.procs.2015.04.088

[12] Michel, T., Genevès, P., Fourati, H., & Layaïda, N. 2018. Attitude estimation for indoor navigation and augmented reality with smartphones. Pervasive and Mobile Computing, 46, 96-121. doi:10.1016/j.pmcj.2018.03.004

[13] Moezzi, R., Krcmarik, D., Hlava, J., & Cýrus, J. 2020. Hybrid SLAM modelling of autonomous robot with augmented reality device. Materials Today: Proceedings, 32(2), 103-107. doi:10.1016/j.matpr.2020.03.036

[14] Nikhashemi, S., Knight, H. H., Nusair, K., & Liat, C. B. 2021. Augmented reality in smart retailing: A (n) (A) Symmetric Approach to continuous intention to use retail brands’ mobile AR apps. Journal of Retailing and Consumer Services, 60, 102464. doi:10.1016/j.jretconser.2021.102464

[15] Pantuwong, N. 2016. A tangible interface for 3D character animation using augmented reality technology. 2016 8th International Conference on Information Technology and Electrical Engineering (ICITEE), 1-6. doi:10.1109/ICITEED.2016.7863263

[16] Reddy, M. 2011. API Design for C++. Elsevier Science.

[17] Roberto, R., Lima, J. P., Uchiyama, H., Teichrieb, V., & Taniguchi, R.-i. 2019. Geometrical and statistical incremental semantic modeling on mobile devices. Computers & Graphics, 84, 199-211. doi:10.1016/j.cag.2019.09.003

[18] Smink, A. R., Reijmersdal, E. A., Noort, G. v., & Neijens, P. C. 2020. Shopping in augmented reality: The effects of spatial presence, personalization and intrusiveness on app and brand responses. Journal of Business Research, 118, 474-485. doi:10.1016/j.jbusres.2020.07.018

[19] Teichrieb, V., Lima, M., Lourenc, E., Bueno, M. A., Kelner, J., & Santos, I. H. 2007. A Survey of Online Monocular Markerless Augmented Reality. International Journal of Modeling and Simulation for the Petroleum Industry, 1-7.

[20] Zhang, H., Zhang, J., Yin, X., Zhou, K., & Pan, Z. 2020. Cloud-to-end Rendering and Storage Management for Virtual Reality in Experimental Education. Virtual Reality & Intelligent Hardware, 2(4), 368-380. doi:10.1016/j.vrih.2020.07.001

Downloads

Published

2021-10-13

Issue

Section

Articles