Aplikasi Sentiment Analysis Terhadap Pelaksanaan Pembelajaran Jarak Jauh Universitas Kristen Petra Dengan Metode Naive Bayes Classifier

Kezia Sekarayu Setyawati(1*), Andreas Handojo(2), Henry Novianus Palit(3),


(1) Program Studi Informatika
(2) Program Studi Informatika
(3) Program Studi Informatika
(*) Corresponding Author

Abstract


In maintaining student satisfaction during online learning period, Petra Christian University conducted a survey to know student’s response. The result then processed manually and takes a long time to gather an information. Therefore, a sentiment analysis application is needed which will help to collect information from survey in a shorter time by classifying sentiments and topics related to online learning. The method used to classify topics and sentiments is the Naive Bayes Classifier. Data will be prepared through preprocessing, by eliminating the same sentence, changing abbreviated words, stemming, and stop word removal.

The classification model produced and used in this application can classify student survey data related to the implementation of online learning based on positive and negative sentiments, also based on the topic, material, lecturers, learning media, and supporting facilities. The accuracy of the classification model is 89% for sentiment classification and 80% for topic classification.


Keywords


Naive Bayes Classifier; Sentiment Analysis; Aspect Based Text Analysis; Online Learning

Full Text:

PDF

References


Chatterjee, S. and Krystyanczuk, M. 2017. Python Social Media Analytics.

Christianto, M. et al. 2020. Aplikasi Analisa Sentimen Pada Komentar Berbahasa Indonesia Dalam Objek Video di Website YouTube Menggunakan Metode Naïve Bayes Classifier. Jurnal Infra. 8.1, 255–259.

Fiarni, C. et al. 2016. Sentiment analysis system for Indonesia online retail shop review using hierarchy Naive Bayes technique. 2016 4th International Conference on Information and Communication Technology, ICoICT 2016. 4, c. DOI:https://doi.org/10.1109/ICoICT.2016.7571912.

Haryanto, B. et al. 2019. Facebook analysis of community sentiment on 2019 Indonesian presidential candidates from Facebook opinion data. Procedia Computer Science. 161, 715–722. DOI:https://doi.org/10.1016/j.procs.2019.11.175.

Jurafsky, D. and Martin, J. 2019. Naive bayes and sentiment classification. Speech and Language Processing. 1–21.

Van Lent, L.G.G. et al. 2017. Too far to care? measuring public attention and fear for ebola using twitter. Journal of Medical Internet Research. 19, 6. DOI:https://doi.org/10.2196/jmir.7219.

Loper, E. and Bird, S. 2002. NLTK: The Natural Language Toolkit. DOI:https://doi.org/10.3115/1118108.1118117.

Mulyono, G. 2010. Universitas Kristen Petra Surabaya. Dimensi Interior,. 8, 1, 44–51. DOI:https://doi.org/https://doi.org/10.9744/century.1.1.%25p

Pallavicini, F. et al. 2016. Beyond Sentiment: How Social Network Analytics Can Enhance Opinion Mining and Sentiment Analysis. Elsevier Inc.

Pang, B. and Lee, L. 2008. Opinion Mining and Sentiment Analysis. Foundations and Trends in Information Retrieval. 1, 2, 91–233. DOI:https://doi.org/10.1561/1500000001.

Setiawan, G. et al. 2019. Aspect Based Sentiment Analysis pada Layanan Umpan Balik Universitas dengan Menggunakan Metode Naïve Bayes dan Latent Semantic Analysis. Jurnal Infra. 7, 1, 170–174.

Susilawati, E. 2017. Public services satisfaction based on sentiment analysis: Case study: Electrical services in Indonesia. 2016 International Conference on Information Technology Systems and Innovation, ICITSI 2016 - Proceedings. DOI:https://doi.org/10.1109/ICITSI.2016.7858241.


Refbacks

  • There are currently no refbacks.


Jurnal telah terindeks oleh :