Perbandingan Analisis Faktor Penentu Penjualan PT. X Menggunakan LASSO Regression dan Gradient Boosted Regression Tree
(1) Program Studi Informatika
(2) Program Studi Informatika
(3) Program Studi Informatika
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
Bel, G. and Warner, M. E. 2015. Factors explaining intermunicipal cooperation in service delivery: a meta-regression
analysis. Journal of Economic Policy Reform 19, 2, 91–115.
DOI= https://doi.org/10.1080/17487870.2015.1100084.
Ferreira, J. C., De Almeida, J., and Da Silva, A. R. 2015. The
Impact of Driving Styles on Fuel Consumption: A Data-Warehouse-and-Data-Mining-Based Discovery Process.
IEEE Transactions on Intelligent Transportation Systems 16,
, 2653–2662. DOI=
https://doi.org/10.1109/TITS.2015.2414663.
Garcia, R., Diaz, G., Pañeda, X. G., Tuero, A. G., Pozueco,
L., Melendi, D., Sanchez, J. A., Corcoba, V., and Pañeda, A.
G. 2017. Impact of efficient driving in professional bus
fleets. Energies 10, 12, 1–25. DOI=
https://doi.org/10.3390/en10122060.
Gawande, S. 2015. 3 Reasons Why You Need to Perform
ETL Testing. URI= https://icedq.com/etl-testing/3-reasonswhy-you-need-to-perform-etl-testing.
Hepp, T., Schmid, M., Gefeller, O., Waldmann, E., and
Mayr, A. 2016. Approaches to regularized regression - A
comparison between gradient boosting and the lasso.
Methods of Information in Medicine 55, 5, 422–430. DOI=
https://doi.org/10.3414/ME16-01-0033.
Linstedt, D., and Olschimke, M. 2015. Building a Scalable
Data Warehouse with Data Vault 2.0. Elsevier.
McNeish, D. M. 2015. Using Lasso for Predictor Selection
and to Assuage Overfitting: A Method Long Overlooked in
Behavioral Sciences. Multivariate Behavioral Research 50,
, 471–484. DOI=
https://doi.org/10.1080/00273171.2015.1036965.
Mueller-Using, S., Feldt, T., Sarfo, F. S., and Eberhardt, K.
A. 2016. Factors associated with performing tuberculosis
screening of HIV-positive patients in Ghana: LASSO-based
predictor selection in a large public health data set. BMC
Public Health 16, 1, 1–8. DOI=
https://doi.org/10.1186/s12889-016-3239-y.
Naeem, T. 2020. Data Warehouse Concepts: Kimball vs.
Inmon Approach. URI=
https://www.astera.com/type/blog/data-warehouse-concepts/.
Persson, C., Bacher, P., Shiga, T., and Madsen, H. 2017.
Multi-site solar power forecasting using gradient boosted
regression trees. Solar Energy 150, 423– 436. DOI=
https://doi.org/10.1016/j.solener.2017.04.066.
Shin, Y. 2015. Application of boosting regression trees to
preliminary cost estimation in building construction projects.
Computational Intelligence and Neuroscience 2015, 9 pages.
DOI= https://doi.org/10.1155/2015/149702.
Smallcombe, M. 2019. The Ultimate Guide to Data
Warehouse Design. URI=
https://www.xplenty.com/blog/the-ultimate-guide-to-datawarehouse-design/.
Sreemathy, J., Priyadharshini, S., Radha, K., Sangeerna, K.,
and Nivetha, G. 2019. Data Validation in ETL Using
TALEND. 2019 5th International Conference on Advanced
Computing and Communication Systems, ICACCS 2019,
– 1186. DOI=
https://doi.org/10.1109/ICACCS.2019.8728420.
Yu, W., Zhao, C., Wu, H., and Peng, C. 2019. Analysis of
Vegetable Price Fluctuation Law and Causes based on Lasso
Regression Model. Journal of Physics: Conference Series
, 1. DOI= https://doi.org/10.1088/1742-
/1284/1/012002.
Refbacks
- There are currently no refbacks.
Jurnal telah terindeks oleh :