
Assess Applicability of the Functional Programming
Paradigms in Embedded Hardware

Danny Benlin Oswan
Petra Christian University

Siwalankerto 121-131
Surabaya 60236
(+62) 312983455

overbored_dundee@yahoo.com

Michiel W. Koehorst
Fontys Hogeschool ICT

Rachelsmolen 1
5612 MA Eindhoven

(+31) 885080000
m.koehorst@fontys.nl

Marcin Gramza
Philips Lighting

High Tech Campus 45
5656 AE Eindhoven

(+31) 402791111
marcin.gramza@philips.com

ABSTRACT
Programming in embedded lighting domain is commonly done
using the C language with the Object Oriented programming
paradigm at Philips Lighting. However applying that paradigm in
combination with the low-level language like C creates a
conceptual gap between the requirements and design and actual
implementation. This results in reduced source code readability
and maintainability. Functional programming paradigm was
expected to alleviate this problem by reducing the gap and
enhancing readability. A proof of concept was built on an
advanced, IP-connected, digital LED driver (Power over Ethernet)
device. The actual code was inspired by the rule-based decision
engine concept developed by EnLight.

Based on the hardware specifications of the device, the existing
code to communicate with, and adherence to the functional
paradigm, Lua was chosen to build the proof with. The
implementation of the decision engine was altered to exploit
characteristics of functional programming, such as representing
actions as functions rather than as an enumeration value, using the
common filter function to replace loops, and many more.

The proof of concept was able to run in the device. It was also
relatively more readable and maintainable. However, it was
slightly slower, less memory efficient, and less capable in dealing
with low-level problems such as garbage compared to the engine in
C language.

Keywords: Functional programming paradigm, Decision
engine, Embedded, Lighting

1. INTRODUCTION
In developing embedded programs to operate lighting components,
Philips Lighting uses C language. Meanwhile, requirements in
program designs are defined as a set of functions, and translation
to the software implementation creates some understanding gap.
Philips attempted to close this gap using the object-oriented
paradigm. However, compounded with fact that C is not designed
for object-oriented paradigm, implementation results in boiler
plates and verbose code, reducing readability. As a program gets
more complex, maintainability rapidly drops.

The functional programming paradigm then draws the interest of
Philips Lighting. It is expected that using said paradigm the gap
between the requirements and implementation can be reduced.
Boilerplate codes can be removed, along with overall reduction of
code length. This could lead to fewer points of failure, less code to
test, and overall increased maintainability.

However, there is also a possibility that the functional paradigm is
inapplicable in the embedded domain. All of these aspects needs
some dedicated research to uncover, which was the reason for this
work. A proof of concept was built on an embedded hardware,
starting with Power over Ethernet (PoE) device from Philips. It
was based on a part from the EnLight Project, a rule-based
decision engine.

2. COMPONENTS
Important components of this work are the hardware device on
which the proof of concept is built, the functional programming
paradigm itself and the language used, and the decision engine as
the proof of concept.

2.1 Embedded Hardware Device
An embedded device used to control luminaire wirelessly was
provided to build the proof of concept on. It uses the
STM32F427VG microcontroller. Highlights are 1024kB flash size
and 256kB RAM. Software code are in C, using a simple operating
system OpenRTOS. A part of C standard libraries is available in
the device. Several mandatory modules of the device are modules
for memory management and circuit board control. Other optional
modules are event handler, IP stack, ZigBee wireless protocol,
LED driver, TFTP server and file I/O utilizing the flash memory.

2.2 Functional Programming Paradigm
Functional Programming Paradigm was based on a formal system
called lambda calculus, devised by Alonzo Church in the 1930’s as
a model for computability, along with Turing Machine and
recursive function theory. It is mainly a system for manipulating
lambda expressions, which could be a name, a function, or a
function application [5].

The first actual functional programming language, was LISP, which
is also the second oldest programming language still in use from

1958. Despite not actually being originated from it, all recent
versions of LISP are lambda calculus based. Multiple other
functional languages follows the development of functional
programming, such as ISWIM, ML, Miranda, and Haskell, which
is the latest well known purely functional programming a language.
Certain characteristics of functional programming took form
between them, including lazy, higher order, polymorphically
typed, pattern matching, and list comprehensions. [6].

Due to its stateless nature of the paradigm, input and output are
handled in a more complicated way and may vary between
functional languages. Current research are trying to utilize the
stateless nature to better handle parallel programming. The
potential of using the paradigm for certification and proving
correctness of a program is also being observed [1].

Ten programming languages capable for functional programming
were examined at the beginning: F#, Haskell, Scala, Scheme,
Clojure, OCaml, Erlang, Groovy, Lua, and MATLAB. Based on
the hardware specifications of the embedded device, the chosen
language must be able to run with very low memory and disk
space and to communicate with C code. It is also preferable for the
chosen language to be able to handle input and output easily, as
well as having low building complexity.

Among the ten languages, Lua was chosen to build the proof of
concept with. It has the smallest size, and being embeddable,
communicates easily with C language [4]. Being basically a set of
C libraries, it is also built by simply including these libraries along
with the actual hardware device’s source code.

2.3 EnLight Project Rule-Based Engine
The EnLight Project was executed by a consortium of 27
companies from 2011 to 2014. The main goal was to develop a
next generation energy efficient and intelligent lighting systems.
Said system is based on networked luminaires, each are capable to
adjust to their own sensory inputs. Each module is specifically
programmed to achieve high efficiency and decoupling, as well as
providing special functionalities required by the project. With this
distributed control, the pilots achieved 40-80% energy savings,
with the same or better user comfort [7].

One vital building block for the luminaire’s intelligence is a
programmable local rule-based decision engine inside the embedded
controller, alongside a rule storage. Each rule consists of a
triggering event, an optional condition, and one or more actions.

The engine works by receiving events, consisting of an enumerated
event type and source MAC address, as well as arbitrary amount
of integer parameters. Each rule inside the storage is then checked
one by one, whether they have a matching address and event type.
If they have a special condition, it will also be evaluated.
Condition can check whether a luminaire level is currently
in/active, compare two integer arguments, or check multiple sub-
conditions using logic gates. If a rule is matched and its condition
evaluated into true, all actions inside it will be executed. The
engine will then move on to match and evaluate the next rule.

There are also a large variety of possible actions, such as
configuring the luminaire, setting up an internal variable or time,
generate a new event, or de/activate luminaire levels. Levels
themselves are virtual settings of luminaire. The logical luminaire
component can have multiple levels of luminaire configuration, and
the highest level active will affect the actual physical luminaire
settings.

As the block diagram in Figure 1 could show, the rule storage is
separated from the engine. To reflect this, the program built in Lua
also have two separate scripts, one for the engine and one for the
rules.

3. IMPLEMENTATION
Before being able to integrate Lua into the embedded device to
start the implementation, several modifications must be done on
both Lua and the device. Most optional modules of the device was
turned off to free up memory, and allocated heap and stack were
increased to use the entire 256 kB RAM. Inside the Lua C
libraries, all references to FILE stream were deleted, as did all
functions that rely on it. The same holds true for several other
streams and functions, such as fwrite, setlocale, stdin, stdout, and
stderr. As a result, three optional Lua libraries, I/O, Debug, and
OS were deleted as whole, along with several functions dealing
with printing, error logging, and files. Additionally, memory
functions inside Lua function l_alloc were replaced with equivalent
functions available for the hardware device. Meanwhile, all Lua
optional libraries, excluding table library, were not loaded to
reduce the interpreter memory, leaving only the base and table
library.

All this modifications allows Lua to run inside the hardware
device. As a consequence, however, the ZigBee module needed to
wirelessly control luminaires was turned off. The device was also
only able to process IP packets for TFTP server and not for the
event handler. To compensate, onboard LEDs were used as
actuators, and an internal task was set to periodically fire events
into the device itself as input. Also, since FILE stream are
removed, the scripts are loaded into Lua as strings instead. The
rule scripts, which is relatively small, can be loaded through the
TFTP server and stored in flash memory, while the larger engine
script are included along with the C source code as C-string object.

Figure 1 EnLight Embedded Controller Block Diagram

3.1 Functional Practices
There were several notable common functional programming
paradigm practices frequently used in building the new decision
engine. The basic one was immutable variables and absence of side
effects. Other than returning the requested value, any statement
and function must not change any variable. A variable, once given
value, never change. Whenever a new data is needed from an old
one, a new instance variable is created with the value of modified
old data. The old data itself is unchanged. This allows functions to
become referentially transparent: being provided the same input, a
function will always provide the same output. While this practice
could not be enforced entirely, as the luminaire output and rule
storage were both global states, it was applied to as many
variables inside functions as possible.

The next one was first-class functions, where functions are treated
as normal variables: functions can be passed as arguments,
returned, assigned, stored in data structures, and created at
runtime, like other primitive values such as integer or character.
This allows for higher-order function: a function that receives
another function as parameter or returns one. This was extensively
used in the implementation. Instead of using type enumeration and
branching construct to decide which function to use for a certain
type of condition and action, references to the function itself are
stored to identify the condition and action types. The engine then
send the stored parameters inside the rules to these function
references when evaluating conditions or executing actions.

After that was array functions, some common functions provided
specifically to manipulate arrays. One aspect that functional
paradigm avoid is iteration. In addition to what the iteration is
trying to do, the presence of either loop counter or variable used
as control statement already uses mutable data. Since iterations
mostly deal with the manipulation of data arrays, these functions
are used to replace them. They generally receive an array and
another function as parameter, along with other needed data. Such
functions do not exist in Lua, but they can be manually created
[2]. During the implementation, four kinds of array functions were
created: each (applying a function to each array element), reduced
(reducing an array to a single value using provided function), filter
(return another array containing only elements that is filtered by
the provided function), and map (return another array with each
elements transformed by the provided function). These four
functions were used to replace most loop constructs of the engine.
The filter function in particular is used to evaluate condition of
rules. Due to how it works, rules are all evaluated at once instead
of one by one.

For array manipulation iterations that are not solved immediately
with array functions, recursions are used. Tail call optimization is
also important to prevent stack overflow from happening,
especially in a resource constrained device such as the one being
used. Since most loops were already replaced with array
functions, only one was left and was replaced by a recursive
function.

There were also other practices examined but then discarded
because its usage was inappropriate in the context, or the chosen
language does not support them. Currying transforms a function
that takes multiple arguments into a function that takes just a
single argument and returns another function if any arguments are
still needed. Composition pipelines the result of one function to
the input of another, creating a single function composed from two
or more. Benefits of both of these practices are rather insignificant
compared to the amount of memory needed in the resource
constrained device. Lazy evaluation, delaying the evaluation of an
expression until its value is needed, is not supported by Lua. So
does pattern matching.

3.2 Other Conversions
There were several other conversions from the original EnLight
engine to the new one that were unrelated to functional
programming paradigm but were necessary due to limitations in
Lua or to take advantage of several features. Rules, which are a set
of data, were loaded using a callback technique in which all data are
passed as a parameter to a loading function [3].

Hash tables were used to represent both objects and arrays. The
rules in particular were no longer stored sequentially by their
triggering event. Instead the new engine stores the rules in hash
table based on trigger. When matching rules with events, instead of
iterating through the array and matching the content inside the
rule, the engine will use the trigger event on the hash table as key
to obtain a list of rules associated with that event. Event
parameters were stored in a global table instead of passed between
all functions in the original engine. The new functions could access
them, but they were more readable with one less parameter. All
integer parameters and arguments were signed 32 bits integer. Lua
only has one type of integer, thus unable to differentiate integer
types as in the original engine. To ensure integer division also
returns an integer, the “//” operator was used. The error handling
was extended to also remove rules which causes error during
runtime, instead of just logging them.

Due to how Lua deals with variable naming and strings, temporary
variables across functions were given same names to save memory.
The names were also relatively short in length. This was later
toned down due to oversimplification making the script more
difficult to read.

3.3 Special Features Used From Device
Due to the differences between the hardware device used by
EnLight and the one used in this work, the engine had to be
modified to compensate for missing features from the original
device. The engine was made running alongside the event handler
module to be able to receive events that were fired internally. The
device used in this work seemed incapable of detecting MAC
address, so IPv6 address were used to determine source of event.
It was also difficult to implement a class with array of bytes in
Lua, so they were represented as strings. To save memory usage,
the new engine did not involve logging process. There were also
less event types and luminaire configuration action types as they

were not supported by the device used. The new device also did
not have an internal clock, so set time action was not supported.

One major modification was the usage of timer for event
generation action and level timeout. The timer in the used device
was much more limited compared to the one in the original engine.
First, each timer can only fire an event once before having to be
reactivated manually. Second, timer must be created on startup,
and the fired event cannot be changed. Third, event fired by timer
cannot carry any data. In the original engine, whenever a generate
event and timeout was instructed, all data was passed to the timer
module to be managed. This is not possible due to the limitations
above. The new decision engine was made responsible for
internally storing data for event generation and level timeout inside
a hash table. The timer only needed to fire its own unique event,
an enumerated number. When this number was sent to the engine,
it was used as a key to find the appropriate data from the hash
table to generate the event or trigger the timeout.

4. EVALUATION
Two aspects were evaluated from the decision engine:
performance, to measure the capability of the new engine, and
readability, which in turn could reflect maintainability.

4.1 Performance Evaluation
Using between one to three actions for each event, the new engine
takes between 9-14 milliseconds for each processed event. By
default, event handlers in the embedded device are restrained to
take at most 10 milliseconds to process an event.

For memory requirements, creation of a Lua state in C takes 3480
bytes, the base and table library take 3288 bytes, and the engine
needs 40664 bytes. The memory needed for rule varies depending
on the amount of rules loaded. Eight rules, for example, requires
9160 bytes. Meanwhile, 24 rules require 27984 bytes and 25 rules
require 29064 bytes. Extrapolating this calculation into a chart will
yield a linear chart for rule memory usage, shown in Figure 2. One
rule would need 1200 bytes on average.

There was a problem regarding garbage that prevents testing of
higher number of rules. The automatic garbage collection of Lua

was too slow, it did not run on certain number of events and run
after several, causing processing time to rise to up to 20
milliseconds. The garbage collector had to be run manually to
achieve consistent processing time. Also, right after the loading of
the rules, the engine will accumulate a large amount of garbage, up
to 22 kilobytes when using 25 rules. While this garbage can be
collected manually to allow runtime memory needs, it completely
exhausted the memory, preventing more rule from being loaded.

4.2 Readability Evaluation
A small survey was held with 40 people by showing them two
rule scripts. The first script was an original EnLight rule script in
XML format from EnLight project. The second was a rule script
in Lua made to be similar in functionality with that original script.
These people were then asked which format was more readable,
understandable, and preferable to write with.

A majority, 33 of them, said that the new script is more readable,
but only 19 agreed it is more understandable. Since the new rule
script involves much less characters, they are faster to read.
However, this also leads to lack of overview and sense of
completeness. Participants who prefer reading XML were used to
deal with XML. They criticized the amount of curly brackets
involved in the new script.

Lastly, 24 preferred to write in the new script’s format. Some
participants pointed out that less characters means less room for
error and less parsing power needed for the program. New script’s
simplicity might help new users in learning the format.
Meanwhile, participants who preferred to use XML mentioned
that, since XML is a standardized format, it is easier to find
people who are already familiar with XML and need no training.
Presence of standard also allows for “safer” feeling when using
XML format.

The most common suggestion for the new rule script was
standardization, particularly to JSON. The new format is close to
JSON format. Standardization allows for syntax checker and
finding experienced people. If JSON schema is used, then clear
layout will also be achieved. Other common suggestion was
providing comments to better describe the rule-script.

5. CONCLUSION
It is possible to use the functional programming paradigm in the
embedded lighting domain. However, some practices are less
exploitable in this domain compared to other possible domains,
which ideally involves more data arrays and less states. If
communication with existing C-code is mandatory, Lua should be
used. Said existing code slightly limits functional programming.
The functional paradigm creates a more readable new decision
engine. However, it is slower and consumes more memory for
equivalent functionality in original C language. Due to high-level
characteristic of the functional language, memory management
such as garbage collection and loading from flash is difficult. Using
a less popular standard in the new program could also lower
interest and understandability.

Figure 2 Calculation Chart of Rule Memory Usage

6. REFERENCES
[1] Barendregt, H. P., Manzonetto, G., and Plasmeijer, M. J. The

imperative and functional programming paradigm. in Cooper,
B. and van Leeuwen, J. ed. Alan Turing — His Work and
Impact, Elsevier, Boston, 2013, 121-126.

[2] Chisholm, J. A Functional Introduction to Lua. Pragpub: The
First Iteration, 47. 2013. 11-17.

[3] Ierusalimschy, R. Programming in Lua. Lua.Org, Rio de
Janeiro, 2013.

[4] Lua. 2012. About. URI= http:// www.lua.org/about.html.

[5] Michaelson, G. An introduction to functional programming
through Lambda calculus. Dover Publications, Mineola,
N.Y., 2011.

[6] Turner, D. A. Some History of Functional Programming
Languages. in 13th International Symposium, TFP 2012, (St.
Andrews, United Kingdom, 2012), Springer Berlin
Heidelberg, 1-20.

[7] van Tujil, F., James, L., Creusen, M., and Stalpers, M.
EnLight Project Outcomes. LED Professional Review, 48.
2015. 66-79.

	1. INTRODUCTION
	2. COMPONENTS
	2.1 Embedded Hardware Device
	2.2 Functional Programming Paradigm
	2.3 EnLight Project Rule-Based Engine

	3. IMPLEMENTATION
	3.1 Functional Practices
	3.2 Other Conversions
	3.3 Special Features Used From Device

	4. EVALUATION
	4.1 Performance Evaluation
	4.2 Readability Evaluation

	5. CONCLUSION
	6. REFERENCES

