KAPASITAS GESER DINDING STRUKTUR BETON BERTULANG MENGGUNAKAN SIMPLIFIED TRUSS MODEL DENGAN MEMPERHITUNGKAN PENGARUH RASIO TINGGI TERHADAP PANJANG DINDING

Clarence Rebeka(1*), Claudia Saraswati(2), Jimmy Chandra(3), Joko Purnomo(4),


(1) Mahasiswa Program Studi Teknik Sipil Universitas Kristen Petra
(2) Mahasiswa Program Studi Teknik Sipil Universitas Kristen Petra
(3) Dosen Program Studi Teknik Sipil Universitas Kristen Petra
(4) Dosen Program Studi Teknik Sipil Universitas Kristen Petra
(*) Corresponding Author

Abstract


Building codes seperti ACI 318M-14 (2015) dan Eurocode 8 (2005) umumnya digunakan untuk menghitung kapasitas geser dinding struktur beton bertulang. Selain itu, ada juga beberapa peneliti yang telah berhasil merumuskan cara perhitungan yang lebih konsisten seperti Chandra et al. (2018) dan Abidin (2019). Namun, rumusan yang diajukan oleh Chandra et al. (2018) masih belum memperhitungkan pengaruh faktor rasio tinggi terhadap panjang (hw/lw) dalam perhitungan kapasitas gesernya. Abidin (2019) kemudian mengembangkan rumus yang diajukan Chandra et al. (2018) dengan memasukkan faktor hw/lw dalam perhitungan. Cara ini kemudian terbukti dapat memperhitungkan kekuatan geser dinding lebih konsisten dengan mengujikannya terhadap 114 spesimen dinding struktural. Namun demikian, cara Abidin (2019) tersebut masih kurang praktis karena harus melewati proses regresi. Dalam penelitian ini, telah dilakukan modifikasi rumus untuk menyederhanakan cara perhitungan tersebut agar bisa digunakan secara praktis. Hasil yang didapat dengan mengujikan pada 169 spesimen dinding struktur beton bertulang yang didapatkan dari berbagai literatur menunjukan adanya prediksi yang cukup akurat dan konsisten terhadap variasi rasio hw/lw dan kekuatan beton (fc’).

Keywords


dinding struktur; kekuatan geser; rasio tinggi terhadap panjang

Full Text:

PDF

References


Abidin, T. F. (2019). Kapasitas Geser Dinding Struktur Beton Bertulang dengan Memperhitungkan Pengaruh Rasio Tinggi terhadap Panjang Dinding. Surabaya, Jawa Timur: Universitas Kristen Petra.

American Concrete Institute Committee 318. (2015). Building Code Requirements for Structural Concrete (ACI 318M-14) and Commentary (ACI 318RM-14). Michigan: Author.

Baek, J. W., Park, H. G., Shin, H. M., & Yim, S. J. (2017) A. Cyclic Loading Test for Reinforced Concrete Walls (Aspect Ratio 2.0) with Grade 550 MPa (80 ksi) Shear Reinforcing Bars. ACI Structural Journal, 114(3), 673.

Baek, J. W., Park, H. G., Lee, J. H., & Bang, C. J. (2017) B. Cyclic Loading Test for Walls of Aspect Ratio 1.0 and 0.5 with Grade 550 MPa (80 ksi) Shear Reinforcing Bars. ACI Structural Journal, 114(4), 969.

Baek, J. W., Park, H. G., Choi, K. K., Seo, M. S., & Chung, L. (2018). Minimum Shear Reinforcement of Slender Walls with Grade 500 MPa (72.5 ksi) Reinforcing Bars. ACI Structural Journal, 15(3).

Barda, F., Hanson, J. M., & Corley W. G. (1977). Shear Strength of Low-Rise Walls with Boundary Elements. ACI Special Publication-53. 149-202.

Burgueno, R., Liu, X., & Hines, E. M. (2014). Web Crushing Capacity of High-Strength Concrete Structural Walls: Experimental Study. ACI Structural Journal, 111(2), 235–246.

Chandra, J., Chanthabouala, K., & Teng, S. (2018). Truss Model for Shear Strength of Structural Concrete Walls. ACI Structural Journal, 115(2), 323–335.

Cheng, M. Y., Hung, S. C., Lequesne, R. D., & Lepage, A. (2016). Earthquake-Resistant Squat Walls Reinforced with High-Strength Steel. American Concrete Institute.

Comite Europeen de Normalisation. (1998). Eurocode 8: Design of Structure for Earthquake Resistance. Brussels: Author.

Corley, W.G., Fiorato, A. E., & Oesterle, R. G. (1981). Structural Walls. ACI Special Publication-72. 77-132.

Farvashany, F. E., Foster, S. J., & Rangan, B. V. (2008). Strength and Deformation of High-Strength Concrete Shearwalls. ACI Structural Journal, 105(1). 21-29.

Gupta, A., & Rangan, B. (1998). High-Strength Concrete Structural Walls. ACI Structural Journal, 95(2). 194-204.

Hidalgo, P. A., Ledezma, C. A., and Jordan, R. M. (1973). Seismic Behavior of Squat Reinforced Concrete Shear Walls. Earthquake Spectra, V. 18, No. 2, 2002, pp. 287-308.

Hirosawa, M. (1975). Past Experimental Results on Reinforced Concrete Shear Walls and Analysis on Them. Kenchiku Kenkyu Shiryo, 6, 33-34.

Hube, M. A., Santa María, H., & López, M. (2017). Experimental Campaign of Thin Reinforced Concrete Shear Walls for Low-Rise Constructions. Proceedings of the 16th World Conference on Earthquake Engineering, Santiago, Jan.

Kabeyasawa, T., & Hiraishi, H., (1998). Tests and Analyses of High-Strength Reinforced Concrete Shear Walls in Japan. SP-176. 281-310.

Kassem, W., & Elsheikh, A. (2010). Estimation of Shear Strength of Structural Shear Walls. Journal of Structural Engineering, 136(10),1215–1224.

Liang, X., Che, J., Yang, P., & Deng, M. (2013). Seismic Behavior of High-Strength Concrete Structural Walls with Edge Columns. ACI Structural Journal, 110(6).

Luna, B. N., Rivera, J. P., & Whittaker, A. S. (2015). Seismic Behavior of Low-Aspect-Ratio Reinforced Concrete Shear Walls. ACI Structural Journal, 112(5), 593.

Maeda, Y. (1986). Study on Load-Deflection Characteristics of Reinforced Concrete Shear Walls of High Strength Concrete - Part 1 Lateral Loading Test (in Japanese). Research Institute: 97-107.

Mo, Y. L., & Chan, J. (1996). Behaviour of Reinforced Concrete Framed Shear Walls. 166(1). 55-68.

Okamoto, S. (1990). Bending Shear Test of RC Shear Wall - Outline (in Japanese). Summaries of technical papers of annual meeting, Architectural Institute of Japan.

Orakcal, K., Massone, L. M., & Wallace, J. W. (2009). Shear Strength of Lightly Reinforced Wall Piers and Spandrels. ACI Structural Journal, 106(4), 455.

Park, H. G., Baek, J. W., Lee, J. H., & Shin, H. M. (2015). Cyclic Loading Tests for Shear Strength of Low-Rise Reinforced Concrete Walls with Grade 550 MPa Bars. ACI Structural Journal, 112(3). Sugano, S. (1973). Restoring Force Characteristics of Structural Members in Reinforced Concrete Frames Subjected to Lateral Forces-An Empirical Evaluation of Strength and Inelastic Stiffness of Beams, Columns and Shear Walls. Concrete Journal, ppl-9, 11(2).

Teng, S., & Chandra, J. (2016). Cyclic shear behavior of high-strength concrete structural walls. ACI Structural Journal, 113(6), 1335–1345.

Wiradinata, S. (1985). Behavior of Squat Walls Subjected to Load Reversals. MS thesis, Department of Civil Engineering, University of Toronto, Toronto. 171 pp.

Yan, S., Zhang, L. F., & Zhang, Y. G. (2008). Seismic Performances of High-Strength Concrete Shear Walls Reinforced with High-Strength Rebars. In Earth & Space 2008: Engineering, Science, Construction, and Operations in Challenging Environments (pp. 1-8).


Refbacks

  • There are currently no refbacks.


Jurnal telah terindeks oleh :