KAPASITAS GESER DINDING STRUKTUR BETON BERTULANG DENGAN MEMPERHITUNGKAN PENGARUH RASIO TINGGI TERHADAP PANJANG DINDING

Teresa Florina Abidin(1*), Jimmy Chandra(2), Joko Purnomo(3),


(1) Mahasiswa Program Studi Teknik Sipil Universitas Kristen Petra
(2) Dosen Program Studi Teknik Sipil Universitas Kristen Petra
(3) Dosen Program Studi Teknik Sipil Universitas Kristen Petra
(*) Corresponding Author

Abstract


Dinding struktur beton bertulang merupakan salah satu elemen penting dalam bangunan tinggi dimana beban lateral seperti beban angin dan gempa lebih dominan. Namun cara perhitungan dinding struktur berdasarkan building codes seperti American Concrete Institute [ACI] 318M-14 (2015) dan Eurocode 8 (2005) masih bersifat empiris sehingga cenderung underestimate. Sementara, Chandra et al. (2018) telah mengajukan cara perhitungan yang lebih konsisten dan akurat dalam bebagai variasi mutu beton maupun rasio tulangan, tetapi masih belum memperhitungkan pengaruh faktor rasio tinggi terhadap panjang (hw/lw) dinding. Penelitian ini memodifikasi perumusan Chandra et al. (2018), dengan menggunakan suatu faktor yang didapatkan dari penelitian pada deep beams oleh Mau dan Hsu (1987). Hasil yang didapat dari 114 spesimen yang didapatkan dari literatur menunjukkan adanya konsistensi hasil yang lebih baik antara angka prediksi dengan kapasitas sesungguhnya berdasarkan percobaan. Cara perhitungan ini telah berhasil memasukkan pengaruh dari hw/lw dinding tanpa kehilangan akurasinya.

Keywords


dinding struktur; kekuatan geser; rasio tinggi terhadap panjang

Full Text:

PDF

References


ACI Committee 318. (2015). Building Code Requirements for Structural Concrete (ACI 318M-14) and Commentary (ACI 318M-14), American Concrete Institute, Michigan.

Baek, J. W., Park, H. G., Shin, H. M., and Yim, S. J. (2017)A. “Cyclic Loading Test for Reinforced Concrete Walls (Aspect Ratio 2.0) with Grade 550 MPa (80 ksi) Shear Reinforcing Bars.” ACI Structural Journal. Vol. 114, No. 3, 673-686.

Baek, J. W., Park, H. G., Lee, J. H., and Bang, C. J. (2017)B. “Cyclic Loading Test for Walls of Aspect Ratio 1.0 and 0.5 with Grade 550 MPa (80 ksi) Shear Reinforcing Bars.” ACI Structural Journal. Vol. 114, No. 4, 969-982.

Baek, J. W., Park, H. G., Choi, K. K., Seo, M. S., and Chung, L. (2018). “Minimum Shear Reinforcement of Slender Walls with Grade 500 MPa (72.5 ksi) Reinforcing Bars.” ACI Structural Journal. Vol. 15, No. 3, 761-774.

Barda, F., Hanson, J. M., and Corley, W. G. (1977). “Shear Strength of Low-Rise Walls with Boundary Elements.” ACI Special Publication. Vol. 53, 149-202.

Burgueno, R., Liu, X., and Hines, E. M. (2014). “Web Crushing Capacity of High-Strength Concrete Structural Walls: Experimental Study.” ACI Structural Journal. Vol. 111, No. 2, 235–246.

Chandra, J., Chanthabouala, K., and Teng, S. (2018). “Truss Model for Shear Strength of Structural Concrete Walls.” ACI Structural Journal. Vol. 115, No. 2, 323–335.

Cheng, M. Y., Hung, S. C., Lequesne, R. D., and Lepage, A. (2016). “Earthquake-Resistant Squat Walls Reinforced with High-Strength Steel.” ACI Structural Journal. Vol. 113, No. 5, 1065-1076.

Comite Europeen de Normalisation . (2005). Eurocode 8: Design of Structures for Earthquake Resistance-Part 1: General Rules, Seismic Actions and Rules for Buildings, Comite Europeen de Normalisation, Brussels.

Corley, W.G., Fiorato, A. E., and Oesterle, R. G. (1981). “Structural Walls.” ACI Special Publication. Vol. 72, 77-132.

Farvashany, F. E., Foster, S. J., and Rangan, B. V. (2008). “Strength and Deformation of High-Strength Concrete Shearwalls.” ACI Structural Journal. Vol. 105, No. 1, 21-29.

Gupta, A., and Rangan, B. (1998). “High-Strength Concrete Structural Walls.” ACI Structural Journal. Vol. 95, No. 2, 194-204.

Hsu, T. T. C., and Mo, Y. L. (1985). “Softening of Concrete in Low-Rise Shearwalls.” ACI Journal. Vol. 82, No. 6, 883-889.

Kabeyasawa, T., and Hiraishi, H. (1998). “Tests and Analyses of High-Strength Reinforced Concrete Shear Walls in Japan.” ACI Special Publication. Vol. 176, 281-310.

Liang, X., Che, J., Yang, P., and Deng, M. (2013). “Seismic Behavior of High-Strength Concrete Structural Walls with Edge Columns.” ACI Structural Journal. Vol. 110, No. 6, 953-963.

Luna, B. N., Rivera, J. P., and Whittaker, A. S. (2015). “Seismic Behavior of Low-Aspect-Ratio Reinforced Concrete Shear Walls.” ACI Structural Journal. Vol. 112, No. 5, 593-603.

Mau, S. T., and Hsu, T. T. (1987). “Shear Strength Prediction for Deep Beams with Web Reinforcement.” ACI Structural Journal. Vol. 84, No. 6, 513-523.

Maeda, Y. (1986). Study on Load-Deflection Characteristics of Reinforced Concrete Shear Walls of High Strength Concrete – Part 1 Lateral Loading Test (in Japanese), Research Institute Maeda Construction Corporation, Tokyo, Japan.

Mo, Y. L., and Chan, J. (1996). “Behaviour of Reinforced Concrete Framed Shear Walls.” Nuclear Engineering and Design. Vol. 166, No. 1, 55-68.

Okamoto, S. (1990). Study on Reactor Building Structure Using Ultra-High Strength Materials: Part 1. Bending Shear Test of RC Shear Wall-Outline, Architectural Institute of Japan, Tokyo, Japan.

Park, H. G., Baek, J. W., Lee, J. H., and Shin, H. M. (2015). “Cyclic Loading Tests for Shear Strength of Low-Rise Reinforced Concrete Walls with Grade 550 MPa Bars.” ACI Structural Journal. Vol. 112, No. 3, 299-310.

Teng, S., and Chandra, J. (2016). “Cyclic Shear Behavior of High-Strength Concrete Structural Walls.” ACI Structural Journal. Vol. 113, No. 6, 1335–1345.

Yan, S., Zhang, L. F., and Zhang, Y. G. (2008). “Seismic Performances of High-Strength Concrete Shear Walls Reinforced with High-Strength Rebars.” Earth & Space 2008: Engineering, Science, Construction, and Operations in Challenging Environments. 1-8.


Refbacks

  • There are currently no refbacks.


Jurnal telah terindeks oleh :