OPTIMASI MULTI-OBJECTIVE DESAIN STUKTUR RANGKA BATANG DENGAN METODE METAHEURISTIK

Kurniawan Susanto, Seli Noviodore Ballo, Wong Foek Tjong, Doddy Prayogo

Abstract


Studi ini dilakukan untuk membandingkan kemampuan optimasi dari empat algoritma metaheuristik yaitu Particle Swarm Optimization (PSO), Differential Evolution (DE), Teaching Learning Based Optimization (TLBO) dan Symbiotic Organisms Search (SOS) dalam optimasi multi-objective terhadap berat dan perpindahan maksimum setiap batang. Tujuan penelitian ini adalah mengevaluasi algoritma metaheuristik yang memiliki performa paling baik dalam mendesain struktur rangka batang yang optimum dalam ranah multi-objective. Karena algoritma metaheuristik selalu memilih profil secara acak, maka pengujian untuk setiap algoritma dilakukan sebanyak tiga puluh kali untuk mendapatkan data sampel yang kemudian akan diolah menggunakan analisa statistik berupa rata-rata dan standar deviasi. Data yang telah diolah akan dibandingkan untuk melihat performa dari masing-masing metode yang digunakan. Performa algoritma terbaik akan dilihat dari analisa hypervolume. Hasil penelitian menunjukkan bahwa algoritma SOS memiliki performa terbaik pada ketiga struktur dengan profil yang didapat dari penelitian sebelumnya.

Keywords


desain, optimasi, multi-objective, metaheuristik dan strktur rangka batang

Full Text:

PDF

References


Angelo, J. S., Bernardino, H. S. and Barbosa, H. J. C. (2015). "Ant Colony Approaches for Multiobjective Structural Optimization Problems with A Cardinality Constraint." Advances in Engineering Software 80: 101-115.

Cheng, M.-Y. and Prayogo, D. (2014). "Symbiotic Organisms Search: A New Metaheuristic Optimization Algorithm." Computers & Structures 139: 98-112.

Cheng, M.-Y. and Prayogo, D. (2016). Modeling the Permanent Deformation Behavior of Asphalt Mixtures Using A Novel Hybrid Computational Intelligence, International Association for Automation and Robotics in Construction (IAARC).

Cheng, M.-Y., Prayogo, D. and Tran, D.-H. (2016). "Optimizing Multiple-Resources Leveling in Multiple Projects Using Discrete Symbiotic Organisms Search." Journal of Computing in Civil Engineering 30(3): 04015036.

Eberhart, R. and Kennedy, J. (1995). A New Optimizer Using Particle Swarm Theory. Micro Machine And Human Science, 1995. MHS '95., Proceedings of the Sixth International Symposium on, 39-43.

Gandomi, A. H., Yang, X.-S., Alavi, A. H. and Talatahari, S. (2013). "Bat Algorithm for Constrained Optimization Tasks." Neural Computing and Applications 22(6): 1239-1255.

Lee, K. S. and Geem, Z. W. (2005). "A New Meta-Heuristic Algorithm for Continuous Engineering Optimization: Harmony Search Theory and Practice." Computer Methods in Applied Mechanics and Engineering 194(36): 3902-3933.

Panda, A. and Pani, S. (2016). "A Symbiotic Organisms Search Algorithm with Adaptive Penalty Function to Solve Multi-Objective Constrained Optimization Problems." Applied Soft Computing 46: 344-360.

Perez, R. E. and Behdinan, K. (2007). "Particle Swarm Approach For Structural Design Optimization." Computers & Structures 85(19): 1579-1588.

Prayogo, D. (2015). An Innovative Parameter-Free Symbiotic Organisms Search (SOS) for Solving Construction-Engineering Problems, PhD Dissertation, National Taiwan University of Science and Technology.

Prayogo, D., Cheng, M.-Y. and Prayogo, H. (2017). "A Novel Implementation of Nature-inspired Optimization for Civil Engineering: A Comparative Study of Symbiotic Organisms Search." Civil Engineering Dimension 19(1): 36-43.

Prayogo, D., Cheng, M., Widjaja, J., Ongkowijoyo, H. and Prayogo, H. (2017). Prediction of Concrete Compressive Strength from Early Age Test Result Using an Advanced Metaheuristic-Based Machine Learning Technique. ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction, Vilnius Gediminas Technical University, Department of Construction Economics & Property.

Prayogo, D., Cheng, M. Y., Widjaja, J., Ongkowijoyo, H. and Prayogo, H. (2017). Prediction of Concrete Compressive Strength from Early Age Test Result Using an Advanced Metaheuristic-Based Machine Learning Technique. ISARC 2017 - Proceedings of the 34th International Symposium on Automation and Robotics in Construction, 856-863.

Rao, R. V., Savsani, V. J. and Vakharia, D. P. (2011). "Teaching–Learning-Based Optimization: A Novel Method for Constrained Mechanical Design Optimization Problems." Computer-Aided Design 43(3): 303-315.

Storn, R. and Price, K. (1997). "Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces." Journal of Global Optimization 11(4): 341-359.

Talbi, E.-G. (2009). Metaheuristics: from design to implementation, John Wiley & Sons.

Tran, D.-H., Cheng, M.-Y. and Prayogo, D. (2016). "A novel Multiple Objective Symbiotic Organisms Search (MOSOS) for time–cost–labor utilization tradeoff problem." Knowledge-Based Systems 94(Supplement C): 132-145.

Tran, H., Cheng, M.-Y. and Prayogo, D. (2015). A Novel Multiple Objective Symbiotic Organisms Search (MOSOS) for Time-Cost-Labor Utilization Tradeoff Problem


Refbacks

  • There are currently no refbacks.


Jurnal telah terindeks oleh :