STUDI KEAKURATAN ELEMEN CANGKANG BERBASIS KRIGING DALAM MENGANALISIS CANGKANG YANG TEBALNYA TIDAK KONSTAN

Yosua Christabel(1*), Wong Foek Tjong(2), Pamuda Pudjisuryadi(3),


(1) Mahasiswa S-1 Program Studi Teknik Sipil
(2) Dosen Program Studi Teknik Sipil, Universitas Kristen Petra, Jl.Siwalankerto 121-131 Surabaya
(3) Dosen Program Studi Teknik Sipil, Universitas Kristen Petra, Jl.Siwalankerto 121-131 Surabaya
(*) Corresponding Author

Abstract


Penelitian ini bertujuan untuk menguji keakuratan elemen cangkang berbasis Kriging dalam menganalisis cangkang yang tebalnya tidak konstan. Elemen cangkang berbasis Kriging ini sebenarnya mempunyai kapasitas untuk membentuk elemen cangkang dengan tebal tidak konstan hanya belum diuji performanya. Permasalahan yang menjadi sarana uji adalah modifikasi ketebalan dari benchmark problems yang sudah ternama dalam dunia metode elemen hingga. Beberapa diantaranya adalah Cook’s Membrane Problem, Hemispherical Shell with 18 Degrees Cut-Off, dan lainnya. Tolok ukur dari pengujian ini adalah displacement. Semua benchmark problem tersebut disajikan melalui ABAQUS dengan menggunakan elemen 3 dimensi. Performa dari elemen cangkang berbasis Kriging secara umum menunjukkan hasil yang baik terhadap berbagai permasalahan tersebut mengingat asumsi dasarnya diturunkan dari elemen 3 dimensi. Penelitian ini diharapkan menjadi sebuah referensi dalam mengembangkan elemen cangkang berbasis Kriging dalam dunia metode elemen hingga secara umum serta khususnya teknik sipil.

Keywords


kriging, elemen cangkang, tebal tidak konstan, ABAQUS.

Full Text:

PDF

References


Alhazza, K. A. & Alhazza, A. A. (2004). A Review of the Vibrations of Plates and Shells. The Shock and Vibration Digest, 36(5), 377–395.

Belytschko, T., Stolarski, H., Liu, W. K., Carpenter, N., & Ong, J. S. J. (1985). Stress Projection for Membrane and Shear Locking in Shell Finite Elements. Computer Methods in Applied Mechanics and Engineering, 51(1-3), 221–258.

Computers and Structures, Inc. (1995). SAP2000, Analysis Reference. Berkerley.

Cook, R. D., D.S. Malkus, M.E. Plesha and R.J. Witt (2002). Concepts and Applications of Finite Element Analysis, 4th edition. Madison, University of Wisconsin, John Wiley and Sons.

Dassault Systemes Simulia Corp. (2009). Abaqus Theory Manual. Providence, RI, USA.

Gilewski, W. & Radwańska, M. (1991). A Survey of Finite Element Models for the Analysis of Moderately Thick Shells. Finite Elements in Analysis and Design, 9(1), 1–21.

H. Wackernagel (1998). Multivariate Geostatistics, the 2nd, Completely Revised Edition. Springer, Berlin.

Kanok-Nukulchai, W. & Wong, F. T. (2008). A Break-Through Enhancement of FEM Using Node-Based Kriging Interpolation. IACM Expressions, 24–29.

Knight, N. F. (1997). Raasch Challenge for Shell Elements. AIAA Journal, 35(2), 375–381.

Lomboy, G. R. (2007). A Quasi-Conforming Shell Element for Geometric and Material Nonlinearity. Doctoral dissertation. Asian Institute of Technology. Bangkok.

Ma, H. (1990). Development of A Geometrically Nonlinear Shell Element by Assumed Strain Methods. Doctoral dissertation. Asian Institute of Technology. Bangkok.

Plengkhom, K. & Kanok-Nukulchai, W. (2005). An Enhancement of Finite Element Method with Moving Kriging Shape Functions. International Journal of Computational Methods, 02(04), 451–475.

R.A. Olea (1999). Geostatistics for Engineers and Earth Scientists. Kluwer Academic Publishers, Boston.

Simo, J.C. and D.D. Fox (1989). ‘On a Stress Resultant Geometrically Exact Shell Model. Part I: Formulation and Optimal Parametrization’, Computer Methods in Applied Mechanics and Engineering, 72, 267-304.

Simo, J.C., D.D. Fox and M.S. Rifai (1989). ‘On a Stress Resultant Geometrically Exact Shell Model. Part II: The Linear Theory; Computational Aspects’, Computer Methods in Applied Mechanics and Engineering, 73, 53-92.

Tanjoyo, F. dan Subianto, K.S. (2009). Penilaian Keakuratan dan Konvergensi Elemen-Elemen Shell yang Terdapat dalam SAP 2000 ver.11.0.0.. Tugas Akhir No.11011658/SIP/2009. Jurusan Teknik Sipil. Universitas Kristen Petra. Surabaya.

White, D. W. & Abel, J. F. (1989). Testing of Shell Finite Element Accuracy and Robustness. Finite Elements in Analysis and Design, 6(2), 129–151.

Wong, F.T. (2009). Kriging-based Finite Element Method for Analyses of Plate and Shells. Doctoral Dissertation. Asian Institute of Technology. Bangkok.

Wong, F.T. (2011). A Breakthrough Enhancement of Finite Element Method Using Kriging Interpolation. Proceedings of the First Indonesian Structural Engineering and Materials Symposium (pp. 11–1–11–16). Parahyangan Catholic University. Bandung.

Wong, F.T. & Kanok-Nukulchai, W. (2006). Kriging-based Finite Element Method for Analyses of Reissner-Mindlin Plates. Proceedings of the Tenth East-Asia Pacific Conference on Structural Engineering and Construction, Emerging Trends: Keynote Lectures and Symposia, (pp. 509–514). Asian Institute of Technology. Bangkok.

Wong, F.T. & Kanok-Nukulchai, W. (2009). Kriging-based Finite Element Method : Element-by-Element Kriging Interpolation. Civil Engineering Dimension, 11(1), 15–22.

Yang, H. T. Y., Saigal, S., Masud, A., & Kapania, R. K. (2000). A Survey of Recent Shell Finite Elements. International Journal for Numerical Methods in Engineering, 47(1-3), 101–127.


Refbacks

  • There are currently no refbacks.


Jurnal telah terindeks oleh :