Aplikasi Website Pemetaan Penyakit Demam Berdarah Menggunakan Metode Geographically Weighted Regression untuk Memprediksi Tingkat Penyebarannya di Surabaya

Holiyed Hadi, Andreas Handojo, Siana Halim

Abstract


Dengue Fever is the one of the most popular endemic illness in Indonesian.. In early 2019, East Java was recorded as the province with the most Dengue Fever cases in Indonesia, because of that the prevent action is needed to reduce the Dengue Fever cases in East Java. But, due to limitations to get East Java data, this research uses Surabaya data as a model, because it has more complete data.

The aim of this research is mapping the Dengue Fever with Geographically Weighted Regression (GWR) method that give a local weighted in every independence variable such as rainfall, the number of rainy day in a year, temperature, and humidity, so that can give the more accurate output to prevent Dengue Fever in future.

The Output of this research is Mapping with color that based on the distribution rate of  Dengue Fever in every puskesmas area in Surabaya, along with mapping the weights of each independent variable to determine which independent variable influences the determination of dengue fever patients in every puskesmas area in Surabaya. So that area, can do a prevent action from the output of this research.

Keywords


Geographically Weighted Regression; Dengue Fever; Mapping; Surabaya City

Full Text:

PDF

References


Agustina, M., F., Wasono, R., & Darsyah, M., Y. 2015. Pemodelan Geographically Weighted Regression (GWR) Pada Tingkat Kemiskinan di Provinsi Jawa Tengah. Statistika. 3(2), 67-74.

Asep, S. 2014. Demam Berdarah Dengue (DBD). Medula, 2(2), 1-15.

Candra, A. 2010. Demam Berdarah Dengue : Epidemiologi, Patogenesis, dan Faktor Risiko Penularan. Aspirator, 2(2), 110-119.

Depkes. 2017. Demam Berdarah Dengue. URI= http://www.depkes.go.id/development/site/depkes/ index.php?cid=1-17042500004&id=demam-berdarah-dengue-dbd-.html.

Gollini, I., Lu, B., Charlton, M., Brundson, C., and Harris, P. 2014. DOMParser. GW model: an R Package for Exploring Spatial Heterogeneity using Geographically Weighted Models. Journal of Statistical Software, 63(17), 1-52. doi: 10.18637/jss.v063.i17.

Google Maps Platform. Google Maps Platform Documentation. URI= https://developers.google.com /maps/documentation/.

Internet Engineering Task Force (IETF). The GeoJSON Format. URI= https://tools.ietf.org/html/rfc7946#section-1.

Mahdiana, D., Winarko, E., Ashari, A., and Kusnanto, H. 2017. A Model for Forecasting the Number of Cases and Distribution Pattern of Dengue Hemorrhagic Fever in Indonesia. International Journal of Advanced Computer Science and Applications, 8(11), 143-150. doi:10.14569/IJACSA.2017.081118

Nazri, C., Hashim, A., Rodziah, I., & Hassan, A. Y. (2013). Utilization of geoinformation tools for dengue control management strategy: a case study in Seberang Prai, Penang Malaysia. International Journal of Remote Sensing Applications, 3(1), 11–17.

Tamtomo, A. B. 2019. INFOGRAFIK: Angka Kasus dan Kematian akibat DBD pada Januari 2019. URI= https://lifestyle.kompas.com/read/2019/02/01/194933120/infografik-angka-kasus-dan-kematian-akibat-dbd-pada-januari-2019

The R Foundation. What Is R?. URI = http://www.r-project.org/about.html.

Utami, T. W., Rohman, A., & Prahutama, A. 2016. Pemodelan Regresi Berganda dan Geographically Weighted Regression pada Tingkat Pengangguran Terbuka di Jawa Tengah. Media Statistika, 9(2), 133-147.


Refbacks

  • There are currently no refbacks.


Jurnal telah terindeks oleh :