Aplikasi Penentu Pendonor Darah Potensial di Surabaya Menggunakan Support Vector Machine berbasis Android

Gita Berliany Karaeng, Andreas Handojo, Anita Nathania Purbowo

Abstract


Blood deficiency will be fatal for human body. However, human cannot create nor made blood, so therefore blood donor event is created to gather blood supplies. Blood donor is a voluntary Activity there is no exact amount of blood supplies to be known or predicted. For now, there are little to no media that help people to access the information around blood donor. That is why we need a system to predict potential amount of blood donors in the future and to provide information about blood donor activities.

The application will cover two major thing, administrator website application and Android application for donors. Administrator website will be used to organize blood donor activities data. Android application will be used to provide information about blood donor activities to the user. The system can also predict potential donors using Support Vector Machine.

The expected product of the program is a system that manage the blood donor activity. Any information about blood donor will be presented to the donors with the Android application. From the experiment and testing, the system can predict the amount of potential and not potential donors in a specific location at a specific time in a certain period.


Keywords


Support Vector Machine; Blood Donor; Prediction; Android Application; Surabaya

Full Text:

PDF

References


Adi, P. 2016. Makin Sehat dengan Donor Darah - Direktorat Jenderal Kekayaan Negara. Retrieved May 16, 2019, from KEMENDAGRI website: https://www.djkn.kemenkeu.go.id/2013/kilasperistiwa/makin-sehat-dengan-donor-darahabout. (n.d.). Retrieved from wycliffe: https://www.wycliffe.org.uk/about/faq/

Alodokter. 2017. Selain Bermanfaat, Transfusi Darah Juga Berisiko - Alodokter. Retrieved May 16, 2019, from ALODOKTER website: https://www.alodokter.com/selain-bermanfaat-transfusi-darah-juga-berisiko

Andrew, A. M. 2001. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Kybernetes. https://doi.org/10.1108/k.2001.30.1.103.6

Darwiche, M., Feuilloy, M., Bousaleh, G., & Schang, D. 2010. Prediction of blood transfusion donation. 51–56. https://doi.org/10.1109/rcis.2010.5507363

Gunpinar, S., & Centeno, G. 2015. Stochastic integer programming models for reducing wastages and shortages of blood products at hospitals. Computers and Operations Research. https://doi.org/10.1016/j.cor.2014.08.017

Kewat, A., Srivastava, P. N., & Sharma, A. K. 2019. Communication, Networks and Computing (Vol. 839). https://doi.org/10.1007/978-981-13-2372-0

Nugroho, A. S., Witarto, A. B., & Handoko, D. 2011. Support Vector Machine , Teori dan Aplikasinya dalam Bioinformatika. Wiley Interdisciplinary Reviews: Computational Statistics. https://doi.org/10.1002/wics.149

Nugroho, E. B., Furqon, M. T., & Hidayat, N. 2018. Klasifikasi Pendonor Darah Menggunakan Metode Support Vector Machine. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya, 2(10), 3860–3864.

Pribadi, T., Indrayanti, A. L., & Yanti, E. V. 2017. Peningkatan Partisipasi Masyarakat Dalam Kegiatan Donor Darah di Palangka Raya. Al Ikhlas.

Sain, S. R., & Vapnik, V. N. 2006. The Nature of Statistical Learning Theory. Technometrics. https://doi.org/10.2307/1271324

Vanany, I., Maryani, A., Amaliah, B., Rinaldy, F., & Muhammad, F. 2015. Blood Traceability System for Indonesian Blood Supply Chain. Procedia Manufacturing. https://doi.org/10.1016/j.promfg.2015.11.073

Yunus, M., Dahlan, H. S., & Santoso, P. B. 2014. SPK Pemilihan Calon Pendonor Darah Potensial dengan Algoritma C4.5 dan Fuzzy Tahani. Jurnal EECCIS.


Refbacks

  • There are currently no refbacks.


Jurnal telah terindeks oleh :